메뉴 건너뛰기




Volumn 32, Issue 3, 2014, Pages 157-165

Computational tools for modeling xenometabolism of the human gut microbiota

Author keywords

Biotransformation; Functional metagenomics; Metabolic modeling; Microbial communities

Indexed keywords

BIOTRANSFORMATION; FUNCTIONAL METAGENOMICS; METABOLIC MODELING; MICROBIAL COMMUNITIES;

EID: 84894254929     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2014.01.005     Document Type: Review
Times cited : (21)

References (90)
  • 1
    • 0016333703 scopus 로고
    • Metabolism of drugs by microorganisms in the intestine
    • Goldman P., et al. Metabolism of drugs by microorganisms in the intestine. Am. J. Clin. Nutr. 1974, 27:1348-1355.
    • (1974) Am. J. Clin. Nutr. , vol.27 , pp. 1348-1355
    • Goldman, P.1
  • 2
    • 0020681194 scopus 로고
    • Tissue and bacterial splitting of sulphasalazine
    • Azad Khan A.K., et al. Tissue and bacterial splitting of sulphasalazine. Clin. Sci. 1983, 64:349-354.
    • (1983) Clin. Sci. , vol.64 , pp. 349-354
    • Azad Khan, A.K.1
  • 3
    • 50849084986 scopus 로고    scopus 로고
    • The gastrointestinal microbiota as a site for the biotransformation of drugs
    • Sousa T., et al. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int. J. Pharm. 2008, 363:1-25.
    • (2008) Int. J. Pharm. , vol.363 , pp. 1-25
    • Sousa, T.1
  • 4
    • 70149096873 scopus 로고    scopus 로고
    • Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism
    • Clayton T.A., et al. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:14728-14733.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 14728-14733
    • Clayton, T.A.1
  • 5
    • 84874048883 scopus 로고    scopus 로고
    • Melamine-induced renal toxicity is mediated by the gut microbiota
    • Zheng X., et al. Melamine-induced renal toxicity is mediated by the gut microbiota. Sci. Transl. Med. 2013, 5:172ra22.
    • (2013) Sci. Transl. Med. , vol.5
    • Zheng, X.1
  • 6
    • 78149295964 scopus 로고    scopus 로고
    • Alleviating cancer drug toxicity by inhibiting a bacterial enzyme
    • Wallace B., et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 2010, 330:831-835.
    • (2010) Science , vol.330 , pp. 831-835
    • Wallace, B.1
  • 7
    • 79953733693 scopus 로고    scopus 로고
    • Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease
    • Wang Z., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472:57-63.
    • (2011) Nature , vol.472 , pp. 57-63
    • Wang, Z.1
  • 8
    • 80052932435 scopus 로고    scopus 로고
    • A randomized, double-blind, placebo-controlled pilot study of Lactobacillus reuteri ATCC 55730 for the prevention of antibiotic-associated diarrhea in hospitalized adults
    • Cimperman L., et al. A randomized, double-blind, placebo-controlled pilot study of Lactobacillus reuteri ATCC 55730 for the prevention of antibiotic-associated diarrhea in hospitalized adults. J. Clin. Gastroenterol. 2011, 45:785-789.
    • (2011) J. Clin. Gastroenterol. , vol.45 , pp. 785-789
    • Cimperman, L.1
  • 9
    • 80052313402 scopus 로고    scopus 로고
    • Probiotics in the prevention of antibiotic-associated diarrhoea and Clostridium difficile infection
    • Hickson M. Probiotics in the prevention of antibiotic-associated diarrhoea and Clostridium difficile infection. Ther. Adv. Gastroenterol. 2011, 4:185-197.
    • (2011) Ther. Adv. Gastroenterol. , vol.4 , pp. 185-197
    • Hickson, M.1
  • 10
    • 84880439384 scopus 로고    scopus 로고
    • Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta
    • Haiser H.J., et al. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science 2013, 341:295-298.
    • (2013) Science , vol.341 , pp. 295-298
    • Haiser, H.J.1
  • 11
    • 84873728735 scopus 로고    scopus 로고
    • Developing a metagenomic view of xenobiotic metabolism
    • Haiser H.J., Turnbaugh P.J. Developing a metagenomic view of xenobiotic metabolism. Pharmacol. Res. 2013, 69:21-31.
    • (2013) Pharmacol. Res. , vol.69 , pp. 21-31
    • Haiser, H.J.1    Turnbaugh, P.J.2
  • 12
    • 77950251400 scopus 로고    scopus 로고
    • A human gut microbial gene catalogue established by metagenomic sequencing
    • Qin J., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464:59-65.
    • (2010) Nature , vol.464 , pp. 59-65
    • Qin, J.1
  • 13
    • 84862276328 scopus 로고    scopus 로고
    • Structure, function and diversity of the healthy human microbiome
    • Human Microbiome Project Consortium
    • Structure, function and diversity of the healthy human microbiome. Nature 2012, 486:207-214. Human Microbiome Project Consortium.
    • (2012) Nature , vol.486 , pp. 207-214
  • 14
    • 84874111575 scopus 로고    scopus 로고
    • The microbiome explored: recent insights and future challenges
    • Blaser M., et al. The microbiome explored: recent insights and future challenges. Nat. Rev. Microbiol. 2013, 11:213-217.
    • (2013) Nat. Rev. Microbiol. , vol.11 , pp. 213-217
    • Blaser, M.1
  • 15
    • 84881110826 scopus 로고    scopus 로고
    • Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules
    • Levy R., Borenstein E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:12804-12809.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 12804-12809
    • Levy, R.1    Borenstein, E.2
  • 16
    • 84872272279 scopus 로고    scopus 로고
    • A systems biology approach to studying the role of microbes in human health
    • Thiele I., et al. A systems biology approach to studying the role of microbes in human health. Curr. Opin. Biotechnol. 2013, 24:4-12.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 4-12
    • Thiele, I.1
  • 17
    • 84876237691 scopus 로고    scopus 로고
    • Exploring host-microbiota interactions in animal models and humans
    • Kostic A.D., et al. Exploring host-microbiota interactions in animal models and humans. Genes Dev. 2013, 27:701-718.
    • (2013) Genes Dev. , vol.27 , pp. 701-718
    • Kostic, A.D.1
  • 18
    • 84881548286 scopus 로고    scopus 로고
    • Computational meta'omics for microbial community studies
    • Segata N., et al. Computational meta'omics for microbial community studies. Mol. Syst. Biol. 2013, 9:666.
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 666
    • Segata, N.1
  • 19
    • 62649151803 scopus 로고    scopus 로고
    • Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites
    • Wikoff W., Anfora A. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:3698-3703.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 3698-3703
    • Wikoff, W.1    Anfora, A.2
  • 20
    • 79952774089 scopus 로고    scopus 로고
    • Metabolic fate of polyphenols in the human superorganism
    • Van Duynhoven J., et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. U.S.A. 2011, 108(Suppl):4531-4538.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , Issue.SUPPL , pp. 4531-4538
    • Van Duynhoven, J.1
  • 21
    • 33744804299 scopus 로고    scopus 로고
    • Metagenomic analysis of the human distal gut microbiome
    • Gill S.R., et al. Metagenomic analysis of the human distal gut microbiome. Science 2006, 312:1355-1359.
    • (2006) Science , vol.312 , pp. 1355-1359
    • Gill, S.R.1
  • 22
    • 84861978076 scopus 로고    scopus 로고
    • Host-gut microbiota metabolic interactions
    • Nicholson J.K., et al. Host-gut microbiota metabolic interactions. Science 2012, 336:1262-1267.
    • (2012) Science , vol.336 , pp. 1262-1267
    • Nicholson, J.K.1
  • 23
    • 84863401504 scopus 로고    scopus 로고
    • Xenobiotic metabolomics: major impact on the metabolome
    • Johnson C.H., et al. Xenobiotic metabolomics: major impact on the metabolome. Annu. Rev. Pharmacol. Toxicol. 2012, 52:37-56.
    • (2012) Annu. Rev. Pharmacol. Toxicol. , vol.52 , pp. 37-56
    • Johnson, C.H.1
  • 24
    • 77953623874 scopus 로고    scopus 로고
    • Enzyme promiscuity: a mechanistic and evolutionary perspective
    • Khersonsky O., Tawfik D.S. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu. Rev. Biochem. 2010, 79:471-505.
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 471-505
    • Khersonsky, O.1    Tawfik, D.S.2
  • 25
    • 1542327276 scopus 로고    scopus 로고
    • Predicting undesirable drug interactions with promiscuous proteins in silico
    • Ekins S. Predicting undesirable drug interactions with promiscuous proteins in silico. Drug Discov. Today 2004, 9:276-285.
    • (2004) Drug Discov. Today , vol.9 , pp. 276-285
    • Ekins, S.1
  • 26
    • 0028174976 scopus 로고
    • Regiochemistry of cytochrome P450 isozymes
    • Oguri K. Regiochemistry of cytochrome P450 isozymes. Annu. Rev. Pharmacol. Toxicol. 1994, 34:251-279.
    • (1994) Annu. Rev. Pharmacol. Toxicol. , vol.34 , pp. 251-279
    • Oguri, K.1
  • 27
    • 17444382016 scopus 로고    scopus 로고
    • Exploring the diversity of complex metabolic networks
    • Hatzimanikatis V., et al. Exploring the diversity of complex metabolic networks. Bioinformatics 2005, 21:1603-1609.
    • (2005) Bioinformatics , vol.21 , pp. 1603-1609
    • Hatzimanikatis, V.1
  • 28
    • 70449500245 scopus 로고    scopus 로고
    • Metabolite and reaction inference based on enzyme specificities
    • De Groot M.J.L., et al. Metabolite and reaction inference based on enzyme specificities. Bioinformatics 2009, 25:2975-2982.
    • (2009) Bioinformatics , vol.25 , pp. 2975-2982
    • De Groot, M.J.L.1
  • 29
    • 79959955242 scopus 로고    scopus 로고
    • The University of Minnesota Pathway Prediction System: multi-level prediction and visualization
    • Gao J., et al. The University of Minnesota Pathway Prediction System: multi-level prediction and visualization. Nucleic Acids Res. 2011, 39:W406-W411.
    • (2011) Nucleic Acids Res. , vol.39
    • Gao, J.1
  • 30
    • 34247265434 scopus 로고    scopus 로고
    • Reaction site mapping of xenobiotic biotransformations
    • Boyer S., et al. Reaction site mapping of xenobiotic biotransformations. J. Chem. Inf. Model. 2007, 47:583-590.
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 583-590
    • Boyer, S.1
  • 31
    • 84861180223 scopus 로고    scopus 로고
    • OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities
    • Zomorrodi A.R., Maranas C.D. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 2012, 8:e1002363.
    • (2012) PLoS Comput. Biol. , vol.8
    • Zomorrodi, A.R.1    Maranas, C.D.2
  • 32
    • 78649677586 scopus 로고    scopus 로고
    • Environments that induce synthetic microbial ecosystems
    • Klitgord N., Segrè D. Environments that induce synthetic microbial ecosystems. PLoS Comput. Biol. 2010, 6:e1001002.
    • (2010) PLoS Comput. Biol. , vol.6
    • Klitgord, N.1    Segrè, D.2
  • 33
    • 33947276100 scopus 로고    scopus 로고
    • Metabolic modeling of a mutualistic microbial community
    • Stolyar S., et al. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 2007, 3:92.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 92
    • Stolyar, S.1
  • 34
    • 84858983547 scopus 로고    scopus 로고
    • KEGG for integration and interpretation of large-scale molecular data sets
    • Kanehisa M., et al. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012, 40:D109-D114.
    • (2012) Nucleic Acids Res. , vol.40
    • Kanehisa, M.1
  • 35
    • 0025611278 scopus 로고
    • The enzymes of detoxication
    • Jakoby W.B., Ziegler D.M. The enzymes of detoxication. J. Biol. Chem. 1990, 265:20715-20718.
    • (1990) J. Biol. Chem. , vol.265 , pp. 20715-20718
    • Jakoby, W.B.1    Ziegler, D.M.2
  • 36
    • 84859840179 scopus 로고    scopus 로고
    • The virtual liver: a multidisciplinary, multilevel challenge for systems biology
    • Holzhütter H-G., et al. The virtual liver: a multidisciplinary, multilevel challenge for systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 2012, 4:221-235.
    • (2012) Wiley Interdiscip. Rev. Syst. Biol. Med. , vol.4 , pp. 221-235
    • Holzhütter, H.-G.1
  • 37
    • 78649579536 scopus 로고    scopus 로고
    • The in silico prediction of human-specific metabolites from hepatotoxic drugs
    • Valerio L.G., Long A. The in silico prediction of human-specific metabolites from hepatotoxic drugs. Curr. Drug Discov. Technol. 2010, 7:170-187.
    • (2010) Curr. Drug Discov. Technol. , vol.7 , pp. 170-187
    • Valerio, L.G.1    Long, A.2
  • 38
    • 75549089640 scopus 로고    scopus 로고
    • The University of Minnesota Biocatalysis/Biodegradation Database: improving public access
    • Gao J., et al. The University of Minnesota Biocatalysis/Biodegradation Database: improving public access. Nucleic Acids Res. 2010, 38:D488-D491.
    • (2010) Nucleic Acids Res. , vol.38
    • Gao, J.1
  • 39
    • 59849106371 scopus 로고    scopus 로고
    • Protein promiscuity and its implications for biotechnology
    • Nobeli I., et al. Protein promiscuity and its implications for biotechnology. Nat. Biotechnol. 2009, 27:157-167.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 157-167
    • Nobeli, I.1
  • 40
    • 0003409952 scopus 로고    scopus 로고
    • Lippincott Williams & Wilkins, D.A. Williams (Ed.)
    • Foye's Principles of Medicinal Chemistry 2007, Lippincott Williams & Wilkins. D.A. Williams (Ed.).
    • (2007) Foye's Principles of Medicinal Chemistry
  • 41
    • 1042265247 scopus 로고    scopus 로고
    • Approaches to measure chemical similarity - a review
    • Nikolova N., Jaworska J. Approaches to measure chemical similarity - a review. QSAR Comb. Sci. 2003, 22:1006-1026.
    • (2003) QSAR Comb. Sci. , vol.22 , pp. 1006-1026
    • Nikolova, N.1    Jaworska, J.2
  • 42
    • 77953707142 scopus 로고    scopus 로고
    • Advances in computational methods to predict the biological activity of compounds
    • Nantasenamat C., et al. Advances in computational methods to predict the biological activity of compounds. Expert Opin. Drug Discov. 2010, 5:633-654.
    • (2010) Expert Opin. Drug Discov. , vol.5 , pp. 633-654
    • Nantasenamat, C.1
  • 43
    • 84859178050 scopus 로고    scopus 로고
    • Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms
    • Kirchmair J., et al. Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms. J. Chem. Inf. Model. 2012, 52:617-648.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 617-648
    • Kirchmair, J.1
  • 44
    • 40949161450 scopus 로고    scopus 로고
    • In silico tools for sharing data and knowledge on toxicity and metabolism: derek for windows, meteor, and vitic
    • Marchant C.A., et al. In silico tools for sharing data and knowledge on toxicity and metabolism: derek for windows, meteor, and vitic. Toxicol. Mech. Methods 2008, 18:177-187.
    • (2008) Toxicol. Mech. Methods , vol.18 , pp. 177-187
    • Marchant, C.A.1
  • 45
    • 0008690929 scopus 로고
    • MetabolExpert, an expert system for predicting metabolism of substances
    • Springer, K.L.E. Kaiser, D. Riedel (Eds.)
    • Darvas F. MetabolExpert, an expert system for predicting metabolism of substances. QSAR in Environmental Toxicology-II 1987, 71-81. Springer. K.L.E. Kaiser, D. Riedel (Eds.).
    • (1987) QSAR in Environmental Toxicology-II , pp. 71-81
    • Darvas, F.1
  • 46
    • 84857192122 scopus 로고    scopus 로고
    • Computational tools for the synthetic design of biochemical pathways
    • Medema M.H., et al. Computational tools for the synthetic design of biochemical pathways. Nat. Rev. Microbiol. 2012, 10:191-202.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 191-202
    • Medema, M.H.1
  • 47
    • 77954268488 scopus 로고    scopus 로고
    • PathPred: an enzyme-catalyzed metabolic pathway prediction server
    • Moriya Y., et al. PathPred: an enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res. 2010, 38:W138-W143.
    • (2010) Nucleic Acids Res. , vol.38
    • Moriya, Y.1
  • 48
    • 77954074097 scopus 로고    scopus 로고
    • Predicting the network of substrate-enzyme-product triads by combining compound similarity and functional domain composition
    • Chen L., et al. Predicting the network of substrate-enzyme-product triads by combining compound similarity and functional domain composition. BMC Bioinformatics 2010, 11:293.
    • (2010) BMC Bioinformatics , vol.11 , pp. 293
    • Chen, L.1
  • 49
    • 41149096945 scopus 로고    scopus 로고
    • Large-scale prediction of drug-target relationships
    • Kuhn M., et al. Large-scale prediction of drug-target relationships. FEBS Lett. 2008, 582:1283-1290.
    • (2008) FEBS Lett. , vol.582 , pp. 1283-1290
    • Kuhn, M.1
  • 50
    • 79957842729 scopus 로고    scopus 로고
    • Prediction of metabolic reactions based on atomic and molecular properties of small-molecule compounds
    • Mu F., et al. Prediction of metabolic reactions based on atomic and molecular properties of small-molecule compounds. Bioinformatics 2011, 27:1537-1545.
    • (2011) Bioinformatics , vol.27 , pp. 1537-1545
    • Mu, F.1
  • 51
    • 34547691000 scopus 로고    scopus 로고
    • Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways
    • Oh M., et al. Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways. J. Chem. Inf. Model. 2007, 47:1702-1712.
    • (2007) J. Chem. Inf. Model. , vol.47 , pp. 1702-1712
    • Oh, M.1
  • 52
    • 84876522835 scopus 로고    scopus 로고
    • BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA
    • Schomburg I., et al. BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res. 2013, 41:D764-D772.
    • (2013) Nucleic Acids Res. , vol.41
    • Schomburg, I.1
  • 53
    • 84875420462 scopus 로고    scopus 로고
    • Modular architecture of metabolic pathways revealed by conserved sequences of reactions
    • Muto A., et al. Modular architecture of metabolic pathways revealed by conserved sequences of reactions. J. Chem. Inf. Comput. Sci. 2013, 10.1021/ci3005379.
    • (2013) J. Chem. Inf. Comput. Sci.
    • Muto, A.1
  • 54
    • 0025879859 scopus 로고
    • Metabolism of levamisole, an anti-colon cancer drug, by human intestinal bacteria
    • Shu Y.Z., et al. Metabolism of levamisole, an anti-colon cancer drug, by human intestinal bacteria. Xenobiotica 1991, 21:737-750.
    • (1991) Xenobiotica , vol.21 , pp. 737-750
    • Shu, Y.Z.1
  • 55
    • 41149099000 scopus 로고    scopus 로고
    • Symbiotic gut microbes modulate human metabolic phenotypes
    • Li M., Wang B. Symbiotic gut microbes modulate human metabolic phenotypes. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:2117-2122.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 2117-2122
    • Li, M.1    Wang, B.2
  • 56
    • 84861125789 scopus 로고    scopus 로고
    • Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours
    • Yamada T., et al. Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours. Mol. Syst. Biol. 2012, 8:581.
    • (2012) Mol. Syst. Biol. , vol.8 , pp. 581
    • Yamada, T.1
  • 57
    • 77956696072 scopus 로고    scopus 로고
    • High-throughput generation, optimization and analysis of genome-scale metabolic models
    • Henry C.S., et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 2010, 28:977-982.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 977-982
    • Henry, C.S.1
  • 58
    • 14544268137 scopus 로고    scopus 로고
    • Uncovering transcriptional regulation of metabolism by using metabolic network topology
    • Patil K.R., Nielsen J. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:2685-2689.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 2685-2689
    • Patil, K.R.1    Nielsen, J.2
  • 59
    • 84869010163 scopus 로고    scopus 로고
    • Mathematical optimization applications in metabolic networks
    • Zomorrodi A.R., et al. Mathematical optimization applications in metabolic networks. Metab. Eng. 2012, 14:672-686.
    • (2012) Metab. Eng. , vol.14 , pp. 672-686
    • Zomorrodi, A.R.1
  • 60
    • 73149122136 scopus 로고    scopus 로고
    • Applications of genome-scale metabolic reconstructions
    • Oberhardt M.A., et al. Applications of genome-scale metabolic reconstructions. Mol. Syst. Biol. 2009, 5:320.
    • (2009) Mol. Syst. Biol. , vol.5 , pp. 320
    • Oberhardt, M.A.1
  • 61
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
    • Lewis N.E., et al. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 2012, 10:291-305.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 291-305
    • Lewis, N.E.1
  • 62
    • 77649173572 scopus 로고    scopus 로고
    • In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene
    • Finley S.D., et al. In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene. BMC Syst. Biol. 2010, 4:7.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 7
    • Finley, S.D.1
  • 63
    • 79955886933 scopus 로고    scopus 로고
    • Metabolite-enabled eradication of bacterial persisters by aminoglycosides
    • Allison K., et al. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 2011, 473:216-220.
    • (2011) Nature , vol.473 , pp. 216-220
    • Allison, K.1
  • 64
    • 84872535919 scopus 로고    scopus 로고
    • Xenobiotics shape the physiology and gene expression of the active human gut microbiome
    • Maurice C.F., et al. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 2013, 152:39-50.
    • (2013) Cell , vol.152 , pp. 39-50
    • Maurice, C.F.1
  • 65
    • 77955963505 scopus 로고    scopus 로고
    • Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed
    • Booijink C.C.G.M., et al. Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed. Appl. Environ. Microbiol. 2010, 76:5533-5540.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 5533-5540
    • Booijink, C.C.G.M.1
  • 66
    • 48349115856 scopus 로고    scopus 로고
    • (1)H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome
    • Jacobs D.M., et al. (1)H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR Biomed. 2008, 21:615-626.
    • (2008) NMR Biomed. , vol.21 , pp. 615-626
    • Jacobs, D.M.1
  • 67
    • 0037069467 scopus 로고    scopus 로고
    • Analysis of optimality in natural and perturbed metabolic networks
    • Segrè D., et al. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:15112-15117.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 15112-15117
    • Segrè, D.1
  • 68
    • 84870676608 scopus 로고    scopus 로고
    • Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks
    • Brochado A.R., et al. Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks. PLoS Comput. Biol. 2012, 8:e1002758.
    • (2012) PLoS Comput. Biol. , vol.8
    • Brochado, A.R.1
  • 69
    • 84880509968 scopus 로고    scopus 로고
    • Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome
    • Modi S.R., et al. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 2013, 499:219-222.
    • (2013) Nature , vol.499 , pp. 219-222
    • Modi, S.R.1
  • 70
    • 84871124415 scopus 로고    scopus 로고
    • A metagenomic insight into our gut's microbiome
    • Lepage P., et al. A metagenomic insight into our gut's microbiome. Gut 2013, 62:146-158.
    • (2013) Gut , vol.62 , pp. 146-158
    • Lepage, P.1
  • 71
    • 84882312793 scopus 로고    scopus 로고
    • Metabolic niche of a prominent sulfate-reducing human gut bacterium
    • Rey F.E., et al. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:13582-13587.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 13582-13587
    • Rey, F.E.1
  • 72
    • 0034782712 scopus 로고    scopus 로고
    • Adaptation of bacteria to the intestinal niche: probiotics and gut disorder
    • Dunne C. Adaptation of bacteria to the intestinal niche: probiotics and gut disorder. Inflamm. Bowel Dis. 2001, 7:136-145.
    • (2001) Inflamm. Bowel Dis. , vol.7 , pp. 136-145
    • Dunne, C.1
  • 73
    • 20444459154 scopus 로고    scopus 로고
    • Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis)
    • Yang H., et al. Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ. Microbiol. 2005, 7:916-932.
    • (2005) Environ. Microbiol. , vol.7 , pp. 916-932
    • Yang, H.1
  • 74
    • 4043138038 scopus 로고    scopus 로고
    • Microflora of the gastrointestinal tract: a review
    • Hao W-L., Lee Y-K. Microflora of the gastrointestinal tract: a review. Methods Mol. Biol. 2004, 268:491-502.
    • (2004) Methods Mol. Biol. , vol.268 , pp. 491-502
    • Hao, W.-L.1    Lee, Y.-K.2
  • 75
    • 84861980130 scopus 로고    scopus 로고
    • Interactions between the microbiota and the immune system
    • Hooper L., et al. Interactions between the microbiota and the immune system. Science 2012, 336:1268-1273.
    • (2012) Science , vol.336 , pp. 1268-1273
    • Hooper, L.1
  • 76
    • 84861992014 scopus 로고    scopus 로고
    • The application of ecological theory toward an understanding of the human microbiome
    • Costello E., Stagaman K. The application of ecological theory toward an understanding of the human microbiome. Science 2012, 336:1255-1262.
    • (2012) Science , vol.336 , pp. 1255-1262
    • Costello, E.1    Stagaman, K.2
  • 77
    • 84864037467 scopus 로고    scopus 로고
    • Metabolic reconstruction for metagenomic data and its application to the human microbiome
    • Abubucker S., et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput. Biol. 2012, 8:e1002358.
    • (2012) PLoS Comput. Biol. , vol.8
    • Abubucker, S.1
  • 78
    • 84855915896 scopus 로고    scopus 로고
    • Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions
    • Kolmeder C.A., et al. Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS ONE 2012, 7:e29913.
    • (2012) PLoS ONE , vol.7
    • Kolmeder, C.A.1
  • 79
    • 77956328000 scopus 로고    scopus 로고
    • Bacterial charity work leads to population-wide resistance
    • Lee H., et al. Bacterial charity work leads to population-wide resistance. Nature 2010, 467:82-85.
    • (2010) Nature , vol.467 , pp. 82-85
    • Lee, H.1
  • 80
    • 0036406590 scopus 로고    scopus 로고
    • Bacteriocins: evolution, ecology, and application
    • Riley M., Wertz J. Bacteriocins: evolution, ecology, and application. Annu. Rev. Microbiol. 2002, 56:117-137.
    • (2002) Annu. Rev. Microbiol. , vol.56 , pp. 117-137
    • Riley, M.1    Wertz, J.2
  • 81
    • 59449106950 scopus 로고    scopus 로고
    • Network-based approaches for linking metabolism with environment
    • Janga S.C., Babu M.M. Network-based approaches for linking metabolism with environment. Genome Biol. 2008, 9:239.
    • (2008) Genome Biol. , vol.9 , pp. 239
    • Janga, S.C.1    Babu, M.M.2
  • 82
    • 55749087868 scopus 로고    scopus 로고
    • Large-scale reconstruction and phylogenetic analysis of metabolic environments
    • Borenstein E., et al. Large-scale reconstruction and phylogenetic analysis of metabolic environments. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:14482-14487.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 14482-14487
    • Borenstein, E.1
  • 83
    • 74049119822 scopus 로고    scopus 로고
    • In silico approaches to study mass and energy flows in microbial consortia: a syntrophic case study
    • Taffs R., et al. In silico approaches to study mass and energy flows in microbial consortia: a syntrophic case study. BMC Syst. Biol. 2009, 3:114.
    • (2009) BMC Syst. Biol. , vol.3 , pp. 114
    • Taffs, R.1
  • 84
    • 84455174807 scopus 로고    scopus 로고
    • Competitive and cooperative metabolic interactions in bacterial communities
    • Freilich S., et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat. Commun. 2011, 2:589.
    • (2011) Nat. Commun. , vol.2 , pp. 589
    • Freilich, S.1
  • 85
    • 54949140438 scopus 로고    scopus 로고
    • DESHARKY: automatic design of metabolic pathways for optimal cell growth
    • Rodrigo G., et al. DESHARKY: automatic design of metabolic pathways for optimal cell growth. Bioinformatics 2008, 24:2554-2556.
    • (2008) Bioinformatics , vol.24 , pp. 2554-2556
    • Rodrigo, G.1
  • 86
    • 77950960250 scopus 로고    scopus 로고
    • OptFlux: an open-source software platform for in silico metabolic engineering
    • Rocha I., et al. OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst. Biol. 2010, 4:45.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 45
    • Rocha, I.1
  • 87
    • 0018652483 scopus 로고
    • Intestinal absorption and metabolism of xenobiotics
    • Chhabra R.S. Intestinal absorption and metabolism of xenobiotics. Environ. Health Perspect. 1979, 33:61-69.
    • (1979) Environ. Health Perspect. , vol.33 , pp. 61-69
    • Chhabra, R.S.1
  • 89
    • 0345275777 scopus 로고    scopus 로고
    • The small intestine as a xenobiotic-metabolizing organ
    • Kaminsky L.S., Zhang Q-Y. The small intestine as a xenobiotic-metabolizing organ. Drug Metab. Dispos. 2003, 31:1520-1525.
    • (2003) Drug Metab. Dispos. , vol.31 , pp. 1520-1525
    • Kaminsky, L.S.1    Zhang, Q.-Y.2
  • 90
    • 70349108406 scopus 로고    scopus 로고
    • Intestinal microbiota regulate xenobiotic metabolism in the liver
    • Björkholm B., et al. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS ONE 2009, 4:e6958.
    • (2009) PLoS ONE , vol.4
    • Björkholm, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.