메뉴 건너뛰기




Volumn 7, Issue 2, 2013, Pages

Efficient online learning for multitask feature selection

Author keywords

Dual averaging method; Feature selection; Multitask learning; Online learning; Supervised learning

Indexed keywords

BIOINFORMATICS; FEATURE EXTRACTION; ITERATIVE METHODS; LEARNING ALGORITHMS; PROBLEM SOLVING; SUPERVISED LEARNING;

EID: 84893288034     PISSN: 15564681     EISSN: 1556472X     Source Type: Journal    
DOI: 10.1145/2499907.2499909     Document Type: Article
Times cited : (43)

References (56)
  • 2
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Ando, R. K. And Zhang, T. 2005. A Framework For Learning Predictive Structures From Multiple Tasks And Unlabeled Data. J. Mach. Learn. Res. 6, 1817-1853.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1817-1853
    • Ando, R.1    Zhang, T.2
  • 4
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • Argyriou, A., Evgeniou, T., And Pontil, M. 2008. Convex Multi-Task Feature Learning. Mach. Learn. 73, 3, 243-272.
    • (2008) Mach. Learn , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 6
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for bayesian multitask learning
    • Bakker, B. And Heskes, T. 2003. Task Clustering And Gating For Bayesian Multitask Learning. J. Mach. Learn. Res. 4, 83-99.
    • (2003) J. Mach. Learn. Res , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 7
    • 41549108812 scopus 로고    scopus 로고
    • Algorithms for sparse linear classifiers in the massive data setting
    • Balakrishnan, S. And Madigan, D. 2008. Algorithms For Sparse Linear Classifiers In The Massive Data Setting. J. Mach. Learn. Res. 9, 313-337. (Pubitemid 351469019)
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 313-337
    • Balakrishnan, S.1    Madigan, D.2
  • 8
    • 55149085224 scopus 로고    scopus 로고
    • A notion of task relatedness yielding provable multiple-task learning guarantees
    • Ben-David, S. And Borbely, R. S. 2008. A Notion Of Task Relatedness Yielding Provable Multiple-Task Learning Guarantees. Mach. Learn. 73, 3, 273-287.
    • (2008) Mach. Learn , vol.73 , Issue.3 , pp. 273-287
    • Ben-David, S.1    Borbely, R.S.2
  • 9
    • 9444270330 scopus 로고    scopus 로고
    • Exploiting Task Relatedness for Multiple Task Learning
    • Learning Theory and Kernel Machines
    • Ben-David, S. And Schuller, R. 2003. Exploiting Task Relatedness For Mulitple Task Learning. In Proceedings Of The 16Th Annual Conference On Learning Theory (Colt'03). 567-580. (Pubitemid 37053230)
    • (2003) Lecture Notes In Computer Science , Issue.2777 , pp. 567-580
    • Ben-David, S.1    Schuller, R.2
  • 11
    • 0031189914 scopus 로고    scopus 로고
    • Multitask Learning
    • Caruana, R. 1997. Multitask Learning. Mach. Learn. 28, 1, 41-75. (Pubitemid 127507169)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 13
    • 84863232691 scopus 로고    scopus 로고
    • Learning incoherent sparse and low-rank patterns from multiple tasks
    • Chen, J., Liu, J., And Ye, J. 2012. Learning Incoherent Sparse And Low-Rank Patterns From Multiple Tasks. Acm Trans. Knowl. Discov. Data 5, 4.
    • (2012) Acm Trans. Knowl. Discov. Data 5 , vol.4
    • Chen, J.1    Liu, J.2    Ye, J.3
  • 17
    • 79952724800 scopus 로고    scopus 로고
    • Minimum description length penalization for group and multi-task sparse learning
    • Dhillon, P. S., Foster, D. P., And Ungar, L. H. 2011. Minimum Description Length Penalization For Group And Multi-Task Sparse Learning. J. Mach. Learn. Res. 12, 525-564.
    • (2011) J. Mach. Learn. Res , vol.12 , pp. 525-564
    • Dhillon, P.S.1    Foster, D.P.2    Ungar, L.H.3
  • 19
    • 78651271942 scopus 로고    scopus 로고
    • Efficient learning using forward-backward splitting
    • Duchi, J. And Singer, Y. 2009. Efficient Learning Using Forward-Backward Splitting. J. Mach. Learn. Res. 10, 2873-2898.
    • (2009) J. Mach. Learn. Res , vol.10 , pp. 2873-2898
    • Duchi, J.1    Singer, Y.2
  • 25
    • 35348918820 scopus 로고    scopus 로고
    • Logarithmic regret algorithms for online convex optimization
    • DOI 10.1007/s10994-007-5016-8, Special Issue on COLT 2006; Guest Editors: Avrim Blum, Gabor Lugosi and Hans Ulrich Simon
    • Hazan, E., Agarwal, A., And Kale, S. 2007. Logarithmic Regret Algorithms For Online Convex Optimization. Mach. Learn. 69, 2-3, 169-192. (Pubitemid 47574314)
    • (2007) Machine Learning , vol.69 , Issue.2-3 , pp. 169-192
    • Hazan, E.1    Agarwal, A.2    Kale, S.3
  • 26
    • 77956508892 scopus 로고    scopus 로고
    • Accelerated gradient methods for stochastic optimization and online learning
    • Hu, C., Kwok, J., And Pan, W. 2009. Accelerated Gradient Methods For Stochastic Optimization And Online Learning. Adv. Neural Inf. Process. Syst. 22, 781-789.
    • (2009) Adv. Neural Inf. Process. Syst , vol.22 , pp. 781-789
    • Hu, C.1    Kwok, J.2    Pan, W.3
  • 28
    • 79551660140 scopus 로고    scopus 로고
    • Multitask sparsity via maximum entropy discrimination
    • Jebara, T. 2011. Multitask Sparsity Via Maximum Entropy Discrimination. J. Mach. Learn. Res. 12, 75-110.
    • (2011) J. Mach. Learn. Res , vol.12 , pp. 75-110
    • Jebara, T.1
  • 29
    • 64149115569 scopus 로고    scopus 로고
    • Sparse online learning via truncated gradient
    • Langford, J., Li, L., And Zhang, T. 2009. Sparse Online Learning Via Truncated Gradient. J. Mach. Learn. Res. 10, 777-801.
    • (2009) J. Mach. Learn. Res , vol.10 , pp. 777-801
    • Langford, J.1    Li, L.2    Zhang, T.3
  • 30
    • 0030521288 scopus 로고    scopus 로고
    • Hierarchical bayes conjoint analysis: Recovery of partworth heterogeneity from reduced experimental designs
    • Lenk, P. J.,Desarbo,W. S., Green, P. E., And Young, M. R. 1996. Hierarchical Bayes Conjoint Analysis: Recovery Of Partworth Heterogeneity From Reduced Experimental Designs. Market. Sci. 15, 2, 173-191.
    • (1996) Market. Sci , vol.15 , Issue.2 , pp. 173-191
    • Lenk, P.1    Desarbo, W.2    Green, P.E.3    Young, M.R.4
  • 36
    • 65249121279 scopus 로고    scopus 로고
    • Primal-dual subgradient methods for convex problems
    • Nesterov, Y. 2009. Primal-Dual Subgradient Methods For Convex Problems. Math. Program. 120, 1, 221-259.
    • (2009) Math. Program , vol.120 , Issue.1 , pp. 221-259
    • Nesterov, Y.1
  • 37
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • Obozinski, G., Taskar, B., And Jordan, M. I. 2009. Joint Covariate Selection And Joint Subspace Selection For Multiple Classification Problems. Statist. Comput. 20, 2, 231-252.
    • (2009) Statist. Comput , vol.20 , Issue.2 , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan, M.I.3
  • 38
    • 79251515185 scopus 로고    scopus 로고
    • Trace norm regularization: Reformulations, algorithms, and multi-task learning
    • Pong, T. K., Tseng, P., Ji, S., And Ye, J. 2010. Trace Norm Regularization: Reformulations, Algorithms, And Multi-Task Learning. Siam J. Optim. 20, 6, 3465-3489.
    • (2010) Siam J. Optim. , vol.20 , Issue.6 , pp. 3465-3489
    • Pong, T.K.1    Tseng, P.2    Ji, S.3    Ye, J.4
  • 40
    • 35348915372 scopus 로고    scopus 로고
    • A primal-dual perspective of online learning algorithms
    • DOI 10.1007/s10994-007-5014-x, Special Issue on COLT 2006; Guest Editors: Avrim Blum, Gabor Lugosi and Hans Ulrich Simon
    • Shalev-Shwartz, S. And Singer, Y. 2007. A Primal-Dual Perspective Of Online Learning Algorithms. Mach. Learn. 69, 2-3, 115-142. (Pubitemid 47574312)
    • (2007) Machine Learning , vol.69 , Issue.2-3 , pp. 115-142
    • Shalev-Shwartz, S.1    Singer, Y.2
  • 42
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. 1996. Regression Shrinkage And Selection Via The Lasso. J. Roy. Statist. Soc. B58, 1, 267-288.
    • (1996) J. Roy. Statist. Soc. B58 , vol.1 , pp. 267-288
    • Tibshirani, R.1
  • 44
    • 78649396336 scopus 로고    scopus 로고
    • Dual averaging method for regularized stochastic learning and online optimization
    • Xiao, L. 2010. Dual Averaging Method For Regularized Stochastic Learning And Online Optimization. J. Mach. Learn. Res. 11, 2543-2596.
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 2543-2596
    • Xiao, L.1
  • 50
    • 79952183228 scopus 로고    scopus 로고
    • Efficient sparse generalized multiple kernel learning
    • Yang, H., Xu, Z., Ye, J., King, I., And Lyu, M. R. 2011B. Efficient Sparse Generalized Multiple Kernel Learning. Ieee Trans. Neural Netw. 22, 3, 433-446.
    • (2011) Ieee Trans. Neural Netw. , vol.22 , Issue.3 , pp. 433-446
    • Yang, H.1    Xu, Z.2    Ye, J.3    King, I.4    Lyu, M.R.5
  • 53
    • 79960148547 scopus 로고    scopus 로고
    • Double updating online learning
    • Zhao, P., Hoi, S. C. H., And Jin, R. 2011A. Double Updating Online Learning. J. Mach. Learn. Res. 12, 1587-1615.
    • (2011) J. Mach. Learn. Res , vol.12 , pp. 1587-1615
    • Zhao, P.1    Hoi, S.C.H.2    Jin, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.