메뉴 건너뛰기




Volumn , Issue , 2009, Pages 547-555

Large-scale sparse logistic regression

Author keywords

Adaptive line search; L1 ball constraint; Logistic regression; Nesterov's method; Sparse learning

Indexed keywords

ADAPTIVE LINE SEARCH; L1-BALL CONSTRAINT; LOGISTIC REGRESSION; NESTEROV'S METHOD; SPARSE LEARNING;

EID: 70350663114     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1557019.1557082     Document Type: Conference Paper
Times cited : (179)

References (35)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • U. Alon, N. Barkai, D. A. Notterman, K. Gish, S.Ybarra, D.Mack, and A. J. Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Cell Biology, 96:6745-6750, 1999.
    • (1999) Cell Biology , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 2
    • 36549025377 scopus 로고    scopus 로고
    • Analysis and identification of β-turn types using multinomial logistic regression and artificial neural network
    • M. P. Asgary, S. Jahandideh, P. Abdolmaleki, and A. Kazemnejad. Analysis and identification of β-turn types using multinomial logistic regression and artificial neural network. Bioinformatics, 23(23):3125-3130, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.23 , pp. 3125-3130
    • Asgary, M.P.1    Jahandideh, S.2    Abdolmaleki, P.3    Kazemnejad, A.4
  • 8
    • 70350676486 scopus 로고    scopus 로고
    • S. Eyheramendy, E. Genkin, W. Ju, D.D. Lewis, and D. Madigan. Sparse bayesian classifiers for text categorization. Technical report
    • S. Eyheramendy, E. Genkin, W. Ju, D.D. Lewis, and D. Madigan. Sparse bayesian classifiers for text categorization. Technical report.
  • 9
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28:337-407, 2000.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 10
    • 62549130467 scopus 로고    scopus 로고
    • Regularized paths for generalized linear models via coordinate descent
    • Technical report, Department of Statistics, Stanford University
    • J. Friedman, T. Hastie, and R. Tibshirani. Regularized paths for generalized linear models via coordinate descent. Technical report, Department of Statistics, Stanford University, 2008.
    • (2008)
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 13
    • 53349163971 scopus 로고    scopus 로고
    • A fixed-point continuation method for l1-regularized minimization with applications to compressed sensing
    • Technical report, CAAM TR07-07
    • E.T. Hale, W. Yin, and Y. Zhang. A fixed-point continuation method for l1-regularized minimization with applications to compressed sensing. Technical report, CAAM TR07-07, 2007.
    • (2007)
    • Hale, E.T.1    Yin, W.2    Zhang, Y.3
  • 15
  • 16
    • 34547688865 scopus 로고    scopus 로고
    • An interior-point method for large-scale l1-regularized logistic regression
    • K. Koh, S. Kim, and S. Boyd. An interior-point method for large-scale l1-regularized logistic regression. Journal of Machine Learning Research, 8:1519-1555, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1519-1555
    • Koh, K.1    Kim, S.2    Boyd, S.3
  • 20
    • 34548125448 scopus 로고    scopus 로고
    • Logistic regression for disease classification using microarray data
    • J. G. Liao and K. Chin. Logistic regression for disease classification using microarray data. Bioinformatics, 23(15):1945-1951, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.15 , pp. 1945-1951
    • Liao, J.G.1    Chin, K.2
  • 23
    • 21244446518 scopus 로고    scopus 로고
    • A comparison of numerical optimizers for logistic regression
    • Technical report
    • T. P. Minka. A comparison of numerical optimizers for logistic regression. Technical report, 2007.
    • (2007)
    • Minka, T.P.1
  • 24
    • 70049091215 scopus 로고
    • Efficient methods in convex programming
    • A. Nemirovski. Efficient methods in convex programming. Lecture Notes, 1994.
    • (1994) Lecture Notes
    • Nemirovski, A.1
  • 26
    • 14344249889 scopus 로고    scopus 로고
    • Feature selection, l1 vs. l2 regularization, and rotational invariance
    • A.Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In International Conference on Machine Learning, 2004.
    • (2004) International Conference on Machine Learning
    • Ng, A.Y.1
  • 28
    • 1942418470 scopus 로고    scopus 로고
    • Grafting: Fast, incremental feature selection by gradient descent in function space
    • S. Perkins, K. Lacker, and J. Theiler. Grafting: fast, incremental feature selection by gradient descent in function space. Journal of Machine Learning Research, 3:1333-1356, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1333-1356
    • Perkins, S.1    Lacker, K.2    Theiler, J.3
  • 29
    • 58349105009 scopus 로고    scopus 로고
    • Lrpath: A logistic regression approach for identifying enriched biological groups in gene expression data
    • M. A. Sartor, G. D. Leikauf, and M. Medvedovic. Lrpath: A logistic regression approach for identifying enriched biological groups in gene expression data. Bioinformatics, 25(2):211-217, 2008.
    • (2008) Bioinformatics , vol.25 , Issue.2 , pp. 211-217
    • Sartor, M.A.1    Leikauf, G.D.2    Medvedovic, M.3
  • 30
  • 31
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • S. K. Shevade and S. S. Keerthi. A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 19(17):2246-2253, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2246-2253
    • Shevade, S.K.1    Keerthi, S.S.2
  • 32
    • 70350662526 scopus 로고    scopus 로고
    • A fast algorithm for large scale l1-regularized logistic regression
    • Technical report, CAAM TR08-07
    • J. Shi, W. Yin, S. Osher, and P. Sajda. A fast algorithm for large scale l1-regularized logistic regression. Technical report, CAAM TR08-07, 2008.
    • (2008)
    • Shi, J.1    Yin, W.2    Osher, S.3    Sajda, P.4
  • 34
  • 35
    • 15944363312 scopus 로고    scopus 로고
    • Classification of gene microarrays by penalized logistic regression
    • J. Zhu and T. Hastie. Classification of gene microarrays by penalized logistic regression. Biostatistics, 5(3):427-443, 2004.
    • (2004) Biostatistics , vol.5 , Issue.3 , pp. 427-443
    • Zhu, J.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.