메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1693-1996

Online learning for multi-task feature selection

Author keywords

Dual averaging method; Feature selection; Multi task learning; Online learning; Supervised learning

Indexed keywords

AVERAGING METHOD; CLOSED FORM SOLUTIONS; DATA SETS; FEATURE SELECTION; MEMORY COST; MULTITASK LEARNING; ON-LINE ALGORITHMS; ONLINE LEARNING; REAL-WORLD; TIME COMPLEXITY; TRAINING DATA;

EID: 78651304213     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1871437.1871706     Document Type: Conference Paper
Times cited : (19)

References (15)
  • 1
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 2
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. Journal of Machine Learning Research, 4:83-99, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 3
    • 41549108812 scopus 로고    scopus 로고
    • Algorithms for sparse linear classifiers in the massive data setting
    • S. Balakrislman and D. Madigan. Algorithms for sparse linear classifiers in the massive data setting. Journal of Machine Learning Research, 9:313-337, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 313-337
    • Balakrislman, S.1    Madigan, D.2
  • 4
    • 9444270330 scopus 로고    scopus 로고
    • Exploiting task relatedness for mulitple task learning
    • S. Ben-David and R. Schuller. Exploiting task relatedness for mulitple task learning. In COLT, pages 567-580, 2003.
    • (2003) COLT , pp. 567-580
    • Ben-David, S.1    Schuller, R.2
  • 5
    • 33746070785 scopus 로고    scopus 로고
    • Online multitask learning
    • O. Dekel, P. M. Long, and Y. Singer. Online multitask learning. In COLT, pages 453-467, 2006.
    • (2006) COLT , pp. 453-467
    • Dekel, O.1    Long, P.M.2    Singer, Y.3
  • 6
    • 78651271942 scopus 로고    scopus 로고
    • Efficient learning using forward-backward splitting
    • J. Duchi and Y. Singer. Efficient learning using forward-backward splitting. Journal of Machine Learning Research, 10:2873-2898, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2873-2898
    • Duchi, J.1    Singer, Y.2
  • 7
    • 12244250351 scopus 로고    scopus 로고
    • Regularized multi-task learning
    • T. Evgeniou and M. Pontil. Regularized multi-task learning. In KDD, pages 109-117, 2004.
    • (2004) KDD , pp. 109-117
    • Evgeniou, T.1    Pontil, M.2
  • 10
    • 65249121279 scopus 로고    scopus 로고
    • Primal-dual subgradient methods for convex problems
    • Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1):221-259, 2009.
    • (2009) Mathematical Programming , vol.120 , Issue.1 , pp. 221-259
    • Nesterov, Y.1
  • 11
    • 70049105714 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, 2009.
    • (2009) Statistics and Computing
    • Obozinski, G.1    Taskar, B.2    Jordan, M.I.3
  • 12
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B, 58(1):267-288, 1996.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 13
    • 77956554074 scopus 로고    scopus 로고
    • Dual averaging method for regularized stochastic learning and online optimization
    • L. Xiao. Dual averaging method for regularized stochastic learning and online optimization. Technical Report MSR-TR-2009-100, Microsoft Research, 2009.
    • (2009) Technical Report MSR-TR-2009-100, Microsoft Research
    • Xiao, L.1
  • 14
    • 79959381810 scopus 로고    scopus 로고
    • Multi-task learning for one-class classification
    • Barcelona, Spain
    • H. Yang, I. King, and M. R. Lyu. Multi-task learning for one-class classification. In IJCNN, Barcelona, Spain, 2010.
    • (2010) IJCNN
    • Yang, H.1    King, I.2    Lyu, M.R.3
  • 15
    • 77956496396 scopus 로고    scopus 로고
    • Online learning for group lasso
    • Haifa, Israel
    • H. Yang, Z. Xu, I. King, and M. R. Lyu. Online learning for group lasso. In ICML, Haifa, Israel, 2010.
    • (2010) ICML
    • Yang, H.1    Xu, Z.2    King, I.3    Lyu, M.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.