메뉴 건너뛰기




Volumn 5, Issue 4, 2012, Pages

Learning incoherent sparse and low-rank patterns from multiple tasks

Author keywords

Low rank and sparse patterns; Multitask learning; Trace norm

Indexed keywords

CARDINALITIES; CONSTRAINED OPTIMIZATION PROBLEMS; EUCLIDEAN; GLOBAL CONVERGENCE; LEAST SQUARE; LOW-RANK AND SPARSE PATTERNS; MULTIPLE TASKS; MULTITASK LEARNING; NON-DIFFERENTIABLE; NONCONVEX; OBJECTIVE FUNCTIONS; OPTIMAL SOLUTIONS; OPTIMIZATION FORMULATIONS; PROJECTED GRADIENT; RATES OF CONVERGENCE; REAL WORLD DATA; SEMI-DEFINITE PROGRAMMING; TRACE-NORMS; UNCONSTRAINED OPTIMIZATION;

EID: 84863232691     PISSN: 15564681     EISSN: 1556472X     Source Type: Journal    
DOI: 10.1145/2086737.2086742     Document Type: Conference Paper
Times cited : (117)

References (59)
  • 1
    • 64149107285 scopus 로고    scopus 로고
    • A new approach to collaborative filtering: Operator estimation with spectral regularization
    • ABERNETHY, J., BACH, F., EVGENIOU, T., AND VERT, J.-P. 2009. A new approach to collaborative filtering: Operator estimation with spectral regularization. J. Mach. Learn. Res. 10, 803-826.
    • (2009) J. Mach. Learn. Res , vol.10 , pp. 803-826
    • Abernethy, J.1    Bach, F.2    Evgeniou, T.3    Vert, J.-P.4
  • 3
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • ANDO, R. K. AND ZHANG, T. 2005. A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 6, 1817-1853.
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 4
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • ARGYRIOU, A., EVGENIOU, T., AND PONTIL, M. 2008. Convex multi-task feature learning. Mach. Learn. 73, 3, 243-272.
    • (2008) Mach. Learn , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 5
    • 80052253522 scopus 로고    scopus 로고
    • Convex optimization with sparsity-inducing norms
    • S. Sra, S. Nowozin, and S. J. Wright, Eds., MIT Press
    • BACH, F., JENATTON, R., MAIRAL, J., AND OBOZINSKI, G. 2011. Convex optimization with sparsity-inducing norms. In Optimization for Machine Learning. S. Sra, S. Nowozin, and S. J. Wright, Eds., MIT Press.
    • (2011) Optimization for Machine Learning
    • Bach, F.1    Jenatton, R.2    Mairal, J.3    Obozinski, G.4
  • 6
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • BAKKER, B. AND HESKES, T. 2003. Task clustering and gating for Bayesian multitask learning. J. Mach. Learn. R. 4, 83-99.
    • (2003) J. Mach. Learn. R , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 7
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • BECK, A. AND TEBOULLE, M. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2, 183-202.
    • (2009) SIAM J. Imag. Sci , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 13
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • CANDÈ S, E. J., LI, X., MA, Y., AND WRIGHT, J. 2009. Robust principal component analysis? J. ACM 58, 1, 1-37.
    • (2009) J. ACM , vol.58 , Issue.1 , pp. 1-37
    • Candè, S.E.J.1    X, L.I.2    Ma, Y.3    Wright, J.4
  • 14
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • CARUANA, R. 1997. Multitask learning. Mach. Learn. 28, 1, 41-75. (Pubitemid 127507169)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 16
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • CHANG, C.-C. AND LIN, C.-J. 2011. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27, 1-27.
    • (2011) ACM Trans. Intell. Syst. Technol , vol.2 , Issue.27 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2
  • 19
    • 80053450397 scopus 로고    scopus 로고
    • Graph-structured multi-task regression and an efficient optimization method for general fused lasso
    • abs/1005.3579
    • CHEN, X., KIM, S., LIN, Q., CARBONELL, J. G., AND XING, E. P. 2010a. Graph-structured multi-task regression and an efficient optimization method for general fused lasso. Computing Research Repository (CoRR), abs/1005.3579.
    • (2010) Computing Research Repository (CoRR)
    • Chen, X.1    Kim, S.2    Lin, Q.3    Carbonell, J.G.4    Xing, E.P.5
  • 20
    • 84903613224 scopus 로고    scopus 로고
    • An efficient proximal-gradient method for single and multi-task regression with structured sparsity
    • abs/1005.4717v3
    • CHEN, X., LIN, Q., KIM, S., CARBONELL, J. G., AND XING, E. P. 2010b. An efficient proximal-gradient method for single and multi-task regression with structured sparsity. Computing Research Repository (CoRR), abs/1005.4717v3.
    • (2010) Computing Research Repository (CoRR)
    • Chen, X.1    Lin, Q.2    Kim, S.3    Carbonell, J.G.4    Xing, E.P.5
  • 32
    • 34848918150 scopus 로고    scopus 로고
    • Global Analysis of mRNA Localization Reveals a Prominent Role in Organizing Cellular Architecture and Function
    • DOI 10.1016/j.cell.2007.08.003, PII S0092867407010227
    • LÉCUYER, E., YOSHIDA, H., PARTHASARATHY, N., ALM, C., BABAK, T., CEROVINA, T., HUGHES, T. R., TOMANCAK, P., AND KRAUSE, H. M. 2007. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131, 1, 174-187. (Pubitemid 47498530)
    • (2007) Cell , vol.131 , Issue.1 , pp. 174-187
    • Lecuyer, E.1    Yoshida, H.2    Parthasarathy, N.3    Alm, C.4    Babak, T.5    Cerovina, T.6    Hughes, T.R.7    Tomancak, P.8    Krause, H.M.9
  • 36
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • LOWE, D. G. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 2, 91-110.
    • (2004) Int. J. Comput. Vis , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 40
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • OBOZINSKI, G., B.TASKAR, AND JORDAN, M. 2010. Joint covariate selection and joint subspace selection for multiple classification problems. Statist. Comput. 20, 2, 231-252.
    • (2010) Statist. Comput , vol.20 , Issue.2 , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan, M.3
  • 41
    • 79251515185 scopus 로고    scopus 로고
    • Trace norm regularization: Reformulations, algorithms, and multi-task learning
    • PONG, T. K., TSENG, P., JI, S., AND YE, J. 2010. Trace norm regularization: Reformulations, algorithms, and multi-task learning. SIAM J. Optim. 20, 6.
    • (2010) SIAM J. Optim , vol.20 , pp. 6
    • Pong, T.K.1    Tseng, P.2    S, J.I.3    J, Y.E.4
  • 44
    • 0001622601 scopus 로고
    • Weighted minimum trace factor analysis
    • SHAPIRO, A. 1982. Weighted minimum trace factor analysis. Psychometrika 47, 3, 243-264.
    • (1982) Psychometrika , vol.47 , Issue.3 , pp. 243-264
    • Shapiro, A.1
  • 45
    • 77952894864 scopus 로고    scopus 로고
    • Bregman divergence-based regularization for transfer subspace learning
    • SI, S., TAO, D., AND GENG, B. 2010. Bregman divergence-based regularization for transfer subspace learning. IEEE Trans. Knowl. Data Eng. 22, 7, 929-942.
    • (2010) IEEE Trans. Knowl. Data Eng , vol.22 , Issue.7 , pp. 929-942
    • S, S.I.1    Tao, D.2    Geng, B.3
  • 46
    • 0033296299 scopus 로고    scopus 로고
    • Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones
    • STURM, J. F. 2001. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11-12, 653-625.
    • (2001) Optim. Methods Softw , vol.11-12 , pp. 653-625
    • Sturm, J.F.1
  • 47
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • TIBSHIRANI, R. 1996. Regression shrinkage and selection via the lasso. J. Royal Statist. Soc., Series B 58, 267-288.
    • (1996) J. Royal Statist. Soc., Series B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 49
    • 0030106462 scopus 로고    scopus 로고
    • Semidefinite programming
    • VANDENBERGHE, L. AND BOYD, S. 1996. Semidefinite programming. SIAM Rev. 38, 1, 49-95. (Pubitemid 126610912)
    • (1996) SIAM Review , vol.38 , Issue.1 , pp. 49-95
    • Vandenberghe, L.1    Boyd, S.2
  • 50
    • 0011336092 scopus 로고
    • Characterization of the subdifferential of some matrix norms
    • WATSON, G. A. 1992. Characterization of the subdifferential of some matrix norms. Linear Algebra Appl. 170, 33-45.
    • (1992) Linear Algebra Appl , vol.170 , pp. 33-45
    • Watson, G.A.1
  • 56
    • 84863245414 scopus 로고    scopus 로고
    • Regularized risk minimization by Nesterov's accelerated gradient methods: Algorithmic extensions and empirical studies
    • abs/1011.0472
    • ZHANG, X., SAHA, A., AND VISHWANATHAN, S. V. N. 2010. Regularized risk minimization by Nesterov's accelerated gradient methods: Algorithmic extensions and empirical studies. Computing Research Repository (CoRR). abs/1011.0472.
    • (2010) Computing Research Repository (CoRR)
    • Zhang, X.1    Saha, A.2    Vishwanathan, S.V.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.