메뉴 건너뛰기




Volumn 69, Issue 2-3, 2007, Pages 115-142

A primal-dual perspective of online learning algorithms

Author keywords

Duality; Mistake bounds; Online learning; Regret bounds

Indexed keywords

CONSTRAINED OPTIMIZATION; ONLINE SYSTEMS; PROBLEM SOLVING;

EID: 35348915372     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-007-5014-x     Document Type: Conference Paper
Times cited : (141)

References (23)
  • 1
    • 0035370926 scopus 로고    scopus 로고
    • Relative loss bounds for on-line density estimation with the exponential family of distributions
    • 3
    • Azoury, K., & Warmuth, M. (2001). Relative loss bounds for on-line density estimation with the exponential family of distributions. Machine Learning, 43(3), 211-246.
    • (2001) Machine Learning , vol.43 , pp. 211-246
    • Azoury, K.1    Warmuth, M.2
  • 3
    • 49949144765 scopus 로고
    • The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming
    • Bregman, L. M. (1967). The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 7, 200-217.
    • (1967) USSR Computational Mathematics and Mathematical Physics , vol.7 , pp. 200-217
    • Bregman, L.M.1
  • 9
    • 84868111801 scopus 로고    scopus 로고
    • A new approximate maximal margin classification algorithm
    • Gentile, C. (2001). A new approximate maximal margin classification algorithm. Journal of Machine Learning Research, 2, 213-242.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 213-242
    • Gentile, C.1
  • 10
    • 0344875562 scopus 로고    scopus 로고
    • The robustness of the p-norm algorithms
    • Gentile, C. (2002). The robustness of the p-norm algorithms. Machine Learning, 53(3).
    • (2002) Machine Learning , vol.53 , Issue.3
    • Gentile, C.1
  • 11
    • 0035370643 scopus 로고    scopus 로고
    • General convergence results for linear discriminant updates
    • 3
    • Grove, A. J., Littlestone, N., & Schuurmans, D. (2001). General convergence results for linear discriminant updates. Machine Learning, 43(3), 173-210.
    • (2001) Machine Learning , vol.43 , pp. 173-210
    • Grove, A.J.1    Littlestone, N.2    Schuurmans, D.3
  • 12
    • 0001976283 scopus 로고
    • Approximation to Bayes risk in repeated play
    • Princeton University Press Princeton
    • Hannan, J. (1957). Approximation to Bayes risk in repeated play. In M. Dresher, A. W. Tucker, & P. Wolfe (Eds.), Contributions to the theory of games (Vol. III, pp. 97-139). Princeton: Princeton University Press.
    • (1957) Contributions to the Theory of Games , vol.3 , pp. 97-139
    • Hannan, J.1    Dresher, M.2    Tucker, A.W.3    Wolfe, P.4
  • 14
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • 1
    • Kivinen, J., & Warmuth, M. (1997). Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1), 1-64.
    • (1997) Information and Computation , vol.132 , pp. 1-64
    • Kivinen, J.1    Warmuth, M.2
  • 15
    • 0035575628 scopus 로고    scopus 로고
    • Relative loss bounds for multidimensional regression problems
    • 3
    • Kivinen, J., & Warmuth, M. (2001). Relative loss bounds for multidimensional regression problems. Journal of Machine Learning, 45(3), 301-329.
    • (2001) Journal of Machine Learning , vol.45 , pp. 301-329
    • Kivinen, J.1    Warmuth, M.2
  • 17
    • 0036161258 scopus 로고    scopus 로고
    • The relaxed online maximum margin algorithm
    • 1-3
    • Li, Y., & Long, P. M. (2002). The relaxed online maximum margin algorithm. Machine Learning, 46(1-3), 361-387.
    • (2002) Machine Learning , vol.46 , pp. 361-387
    • Li, Y.1    Long, P.M.2
  • 18
    • 34250091945 scopus 로고
    • Learning when irrelevant attributes abound: A new linear-threshold algorithm
    • Littlestone, N. (1988). Learning when irrelevant attributes abound: a new linear-threshold algorithm. Machine Learning, 2, 285-318.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 21
    • 0004267646 scopus 로고
    • Princeton University Press Princeton
    • Rockafellar, R. T. (1970). Convex analysis. Princeton: Princeton University Press.
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 22
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • Reprinted in Neurocomputing, MIT Press, 1988
    • Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65, 386-407. (Reprinted in Neurocomputing, MIT Press, 1988.)
    • (1958) Psychological Review , vol.65 , pp. 386-407
    • Rosenblatt, F.1
  • 23
    • 0035413537 scopus 로고    scopus 로고
    • Competitive on-line statistics
    • Vovk, V. (2001). Competitive on-line statistics. International Statistical Review, 69, 213-248.
    • (2001) International Statistical Review , vol.69 , pp. 213-248
    • Vovk, V.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.