The therapeutic potential of acetyl-lysine and methyl-lysine effector domains
Brennan, P.; Filippakopoulos, P.; Knapp, S. The therapeutic potential of acetyl-lysine and methyl-lysine effector domains Drug Discovery Today: Ther. Strategies 2012, 9 (2-3) e101-e110
Progress in the Development and Application of Small Molecule Inhibitors of Bromodomain-Acetyl-lysine Interactions
Hewings, D. S.; Rooney, T. P. C.; Jennings, L. E.; Hay, D. A.; Schofield, C. J.; Brennan, P. E.; Knapp, S.; Conway, S. J. Progress in the Development and Application of Small Molecule Inhibitors of Bromodomain-Acetyl-lysine Interactions J. Med. Chem. 2012, 55 (22) 9393-9413
(2012)J. Med. Chem., vol.55, Issue.22, pp. 9393-9413
Selective Inhibition of Acetyl-Lysine Effector Domains of the Bromodomain Family in Oncology
In; Kumar, R. Springer: New York
Müller, S.; Lingard, H.; Knapp, S., Selective Inhibition of Acetyl-Lysine Effector Domains of the Bromodomain Family in Oncology. In Nuclear Signaling Pathways and Targeting Transcription in Cancer; Kumar, R., Ed.; Springer: New York: 2014; pp 279-298.
Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W. B.; Fedorov, O.; Morse, E. M.; Keates, T.; Hickman, T. T.; Felletar, I.; Philpott, M.; Munro, S.; McKeown, M. R.; Wang, Y.; Christie, A. L.; West, N.; Cameron, M. J.; Schwartz, B.; Heightman, T. D.; La Thangue, N.; French, C. A.; Wiest, O.; Kung, A. L.; Knapp, S.; Bradner, J. E. Selective inhibition of BET bromodomains Nature 2010, 468 (7327) 1067-1073
3,5-Dimethylisoxazoles Act As Acetyl-lysine-mimetic Bromodomain Ligands
Hewings, D. S.; Wang, M.; Philpott, M.; Fedorov, O.; Uttarkar, S.; Filippakopoulos, P.; Picaud, S.; Vuppusetty, C.; Marsden, B.; Knapp, S.; Conway, S. J.; Heightman, T. D. 3,5-Dimethylisoxazoles Act As Acetyl-lysine-mimetic Bromodomain Ligands J. Med. Chem. 2011, 54 (19) 6761-6770
(2011)J. Med. Chem., vol.54, Issue.19, pp. 6761-6770
Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia
Dawson, M. A.; Prinjha, R. K.; Dittmann, A.; Giotopoulos, G.; Bantscheff, M.; Chan, W.-I.; Robson, S. C.; Chung, C.-w.; Hopf, C.; Savitski, M. M.; Huthmacher, C.; Gudgin, E.; Lugo, D.; Beinke, S.; Chapman, T. D.; Roberts, E. J.; Soden, P. E.; Auger, K. R.; Mirguet, O.; Doehner, K.; Delwel, R.; Burnett, A. K.; Jeffrey, P.; Drewes, G.; Lee, K.; Huntly, B. J. P.; Kouzarides, T. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia Nature 2011, 478 (7370) 529-533
Fragment-Based Discovery of Bromodomain Inhibitors Part 2: Optimization of Phenylisoxazole Sulfonamides
Bamborough, P.; Diallo, H.; Goodacre, J. D.; Gordon, L.; Lewis, A.; Seal, J. T.; Wilson, D. M.; Woodrow, M. D.; Chung, C.-w. Fragment-Based Discovery of Bromodomain Inhibitors Part 2: Optimization of Phenylisoxazole Sulfonamides J. Med. Chem. 2011, 55 (2) 587-596
The design and synthesis of 5- and 6-isoxazolylbenzimidazoles as selective inhibitors of the BET bromodomains
Hay, D.; Fedorov, O.; Filippakopoulos, P.; Martin, S.; Philpott, M.; Picaud, S.; Hewings, D. S.; Uttakar, S.; Heightman, T. D.; Conway, S. J.; Knapp, S.; Brennan, P. E. The design and synthesis of 5- and 6- isoxazolylbenzimidazoles as selective inhibitors of the BET bromodomains MedChemComm 2013, 4 (1) 140-144
Optimization of 3,5-Dimethylisoxazole Derivatives as Potent Bromodomain Ligands
Hewings, D. S.; Fedorov, O.; Filippakopoulos, P.; Martin, S.; Picaud, S.; Tumber, A.; Wells, C.; Olcina, M. M.; Freeman, K.; Gill, A.; Ritchie, A. J.; Sheppard, D. W.; Russell, A. J.; Hammond, E. M.; Knapp, S.; Brennan, P. E.; Conway, S. J. Optimization of 3,5-Dimethylisoxazole Derivatives as Potent Bromodomain Ligands J. Med. Chem. 2013, 56 (8) 3217-3227
Albrecht, B. K.; Audia, J. E.; Cote, A.; Gehling, V. S.; Harmange, J.-C.; Hewitt, M. C.; Leblanc, Y.; Naveschuk, C. G.; Taylor, A. M.; Vaswani, R. G. Preparation of compounds containing azepine-based ring systems as bromodomain-containing protein inhibitors and therapeutic uses thereof. WO2012075383A2, 2012.
PFI-1, a Highly Selective Protein Interaction Inhibitor, Targeting BET Bromodomains
Picaud, S.; Da Costa, D.; Thanasopoulou, A.; Filippakopoulos, P.; Fish, P. V.; Philpott, M.; Fedorov, O.; Brennan, P.; Bunnage, M. E.; Owen, D. R.; Bradner, J. E.; Taniere, P.; O'Sullivan, B.; Müller, S.; Schwaller, J.; Stankovic, T.; Knapp, S. PFI-1, a Highly Selective Protein Interaction Inhibitor, Targeting BET Bromodomains Cancer Res. 2013, 73 (11) 3336-3346
(2013)Cancer Res., vol.73, Issue.11, pp. 3336-3346
RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia
Zuber, J.; Shi, J.; Wang, E.; Rappaport, A. R.; Herrmann, H.; Sison, E. A.; Magoon, D.; Qi, J.; Blatt, K.; Wunderlich, M.; Taylor, M. J.; Johns, C.; Chicas, A.; Mulloy, J. C.; Kogan, S. C.; Brown, P.; Valent, P.; Bradner, J. E.; Lowe, S. W.; Vakoc, C. R. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia Nature 2011, 478 (7370) 524-528
BET bromodomain inhibition as a novel strategy for reactivation of HIV-1
Banerjee, C.; Archin, N.; Michaels, D.; Belkina, A. C.; Denis, G. V.; Bradner, J.; Sebastiani, P.; Margolis, D. M.; Montano, M. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1 J. Leukocyte Biol. 2012, 92 (6) 1147-1154
Chung, C.-W.; Nicodeme, E. Quinoline, azoloquinoline, triazolobenzodiazepine derivatives as bromodomain inhibitors for treating autoimmune and inflammatory diseases and their preparation. WO2011054843A1, 2011.
Compounds 5-12 and 14-17 were purchased from Interbioscreen.
Compounds 5-12 and 14-17 were purchased from Interbioscreen (http://www.ibscreen.com).
25
84856397832
Fragment-based discovery of bromodomain inhibitors part 1: Inhibitor binding modes and implications for lead discovery
Chung, C.-w.; Dean, T. W.; Woolven, J. M.; Bamborough, P. Fragment-based discovery of bromodomain inhibitors part 1: inhibitor binding modes and implications for lead discovery J. Med. Chem. 2011, 55 (2) 576-586
Flexible protein-ligand docking by global energy optimization in internal coordinates
DOI 10.1002/(SICI)1097-0134(1997)1+<215::AID-PROT29>3.0.CO;2-Q
Totrov, M.; Abagyan, R. Flexible protein-ligand docking by global energy optimization in internal coordinates Proteins 1997, Suppl 1, 215-220 (Pubitemid 28090502)
Calculated using the free ACD/I-Lab calculator at.
Calculated using the free ACD/I-Lab calculator at http://ilab.cds.rsc. org.
29
79952381408
CREBBP mutations in relapsed acute lymphoblastic leukaemia
Mullighan, C. G.; Zhang, J.; Kasper, L. H.; Lerach, S.; Payne-Turner, D.; Phillips, L. A.; Heatley, S. L.; Holmfeldt, L.; Collins-Underwood, J. R.; Ma, J.; Buetow, K. H.; Pui, C.-H.; Baker, S. D.; Brindle, P. K.; Downing, J. R. CREBBP mutations in relapsed acute lymphoblastic leukaemia Nature 2011, 471 (7337) 235-239
Open access chemical and clinical probes to support drug discovery
Edwards, A. M.; Bountra, C.; Kerr, D. J.; Willson, T. M. Open access chemical and clinical probes to support drug discovery Nature Chem. Biol. 2009, 5 (7) 436-440
A α5 Receptor Inverse Agonists as Cognition Enhancers
DOI 10.1021/jm031076j
Sternfeld, F.; Carling, R. W.; Jelley, R. A.; Ladduwahetty, T.; Merchant, K. J.; Moore, K. W.; Reeve, A. J.; Street, L. J.; O'Connor, D.; Sohal, B.; Atack, J. R.; Cook, S.; Seabrook, G.; Wafford, K.; Tattersall, F. D.; Collinson, N.; Dawson, G. R.; Castro, J. L.; MacLeod, A. M. Selective, Orally Active γ-Aminobutyric AcidA α5 Receptor Inverse Agonists as Cognition Enhancers J. Med. Chem. 2004, 47 (9) 2176-2179 (Pubitemid 38478841)
Naphthyl and coumarinyl biarylpiperazine derivatives as highly potent human β-secretase inhibitors. Design, synthesis, and enzymatic BACE-1 and cell assays
DOI 10.1021/jm0602864
Garino, C.; Tomita, T.; Pietrancosta, N.; Laras, Y.; Rosas, R.; Herbette, G.; Maigret, B.; Quéléver, G.; Iwatsubo, T.; Kraus, J.-L. Naphthyl and Coumarinyl Biarylpiperazine Derivatives as Highly Potent Human β-Secretase Inhibitors. Design, Synthesis, and Enzymatic BACE-1 and Cell Assays J. Med. Chem. 2006, 49 (14) 4275-4285 (Pubitemid 44036671)
BRD-NUT oncoproteins: A family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells
DOI 10.1038/sj.onc.1210852, PII 1210852
French, C. A.; Ramirez, C. L.; Kolmakova, J.; Hickman, T. T.; Cameron, M. J.; Thyne, M. E.; Kutok, J. L.; Toretsky, J. A.; Tadavarthy, A. K.; Kees, U. R.; Fletcher, J. A.; Aster, J. C. BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells Oncogene 2007, 27 (15) 2237-2242 (Pubitemid 351483375)
Measurement of Dynamic Protein Binding to Chromatin In Vivo, Using Photobleaching Microscopy
DOI 10.1016/S0076-6879(03)75025-3
Phair, R. D.; Gorski, S. A.; Misteli, T. Measurement of dynamic protein binding to chromatin in vivo, using photobleaching microscopy Methods Enzymol. 2004, 375, 393-414 (Pubitemid 38124881)
McCoy, A. J.; Grosse-Kunstleve, R. W.; Storoni, L. C.; Read, R. J. Likelihood-enhanced fast translation functions Acta Crystallogr., Sect. D: Biol. Crystallogr. 2005, 61, 458-464 (Pubitemid 43934606)
Automated protein model building combined with iterative structure refinement
DOI 10.1038/8263
Perrakis, A.; Morris, R.; Lamzin, V. S. Automated protein model building combined with iterative structure refinement Nature Struct. Biol. 1999, 6 (5) 458-463 (Pubitemid 29218016)
Refinement of macromolecular structures by the maximum-likelihood method
DOI 10.1107/S0907444996012255
Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method Acta Crystallogr., Sect. D: Biol. Crystallogr. 1997, 53, 240-255 (Pubitemid 27235885)
Optimal description of a protein structure in terms of multiple groups undergoing TLS motion
Painter, J.; Merritt, E. A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion Acta Crystallogr., Sect. D: Biol. Crystallogr. 2006, 62, 439-450