메뉴 건너뛰기




Volumn 5, Issue 11, 2013, Pages 2155-2173

Whole genome and tandem duplicate retention facilitated glucosinolate pathway diversification in the mustard family

Author keywords

Brassicaceae; Comparative genomics; Functional diversification; Systems biology; Whole genome duplication

Indexed keywords

GLUCOSINOLATE;

EID: 84892641918     PISSN: None     EISSN: 17596653     Source Type: Journal    
DOI: 10.1093/gbe/evt162     Document Type: Article
Times cited : (80)

References (77)
  • 1
    • 58149215723 scopus 로고    scopus 로고
    • A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense
    • Bednarek P, et al. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101-106.
    • (2009) Science , vol.323 , pp. 101-106
    • Bednarek, P.1
  • 2
    • 44349194830 scopus 로고    scopus 로고
    • The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis
    • Beekwilder J, et al. 2008. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS One 3:e2068.
    • (2008) PLoS One , vol.3
    • Beekwilder, J.1
  • 3
    • 84873520943 scopus 로고    scopus 로고
    • Impact of wholegenome and tandem duplications in the expansion and functional diversification of the F-box family in legumes (Fabaceae)
    • Bellieny-Rabelo D, Oliveira AE, Venancio TM. 2013. Impact of wholegenome and tandem duplications in the expansion and functional diversification of the F-box family in legumes (Fabaceae). PLoS One 8:e55127.
    • (2013) PLoS One , vol.8
    • Bellieny-Rabelo, D.1    Oliveira, A.E.2    Venancio, T.M.3
  • 4
    • 33744832015 scopus 로고    scopus 로고
    • The enzymic and chemically induced decomposition of glucosinolates
    • Bones AM, Rossiter JT. 2006. The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67:1053-1067.
    • (2006) Phytochemistry , vol.67 , pp. 1053-1067
    • Bones, A.M.1    Rossiter, J.T.2
  • 5
    • 0037468758 scopus 로고    scopus 로고
    • Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events
    • Bowers JE, Chapman BA, Rong J, Paterson AH. 2003. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433-438.
    • (2003) Nature , vol.422 , pp. 433-438
    • Bowers, J.E.1    Chapman, B.A.2    Rong, J.3    Paterson, A.H.4
  • 6
    • 18044369242 scopus 로고    scopus 로고
    • The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis
    • Celenza JL, et al. 2005. The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis. Plant Physiol. 137:253-262.
    • (2005) Plant Physiol. , vol.137 , pp. 253-262
    • Celenza, J.L.1
  • 7
    • 84884678887 scopus 로고    scopus 로고
    • The Tarenaya hassleriana genome provides insight into reproductive trait and genome evolution of crucifers
    • Cheng S, et al. 2013. The Tarenaya hassleriana genome provides insight into reproductive trait and genome evolution of crucifers. Plant Cell 25:2813-2830.
    • (2013) Plant Cell , vol.25 , pp. 2813-2830
    • Cheng, S.1
  • 8
    • 0038692106 scopus 로고    scopus 로고
    • Methyl jasmonate as a vital substance in plants
    • Cheong J-J, Choi YD. 2003. Methyl jasmonate as a vital substance in plants. Trends Genet. 19:409-413.
    • (2003) Trends Genet. , vol.19 , pp. 409-413
    • Cheong, J.-J.1    Choi, Y.D.2
  • 9
    • 58149242371 scopus 로고    scopus 로고
    • Glucosinolate metabolites required for an Arabidopsis innate immune response
    • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM. 2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95-101.
    • (2009) Science , vol.323 , pp. 95-101
    • Clay, N.K.1    Adio, A.M.2    Denoux, C.3    Jander, G.4    Ausubel, F.M.5
  • 10
    • 72649096546 scopus 로고    scopus 로고
    • Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae)
    • Couvreur TL, et al. 2010. Molecular phylogenetics, temporal diversification, and principles of evolution in the mustard family (Brassicaceae). Mol Biol Evol. 27:55-71.
    • (2010) Mol Biol Evol. , vol.27 , pp. 55-71
    • Couvreur, T.L.1
  • 11
    • 27144519666 scopus 로고    scopus 로고
    • Genome duplication and the origin of angiosperms
    • De Bodt S, Maere S, Van de Peer Y. 2005. Genome duplication and the origin of angiosperms. Trends Ecol Evol. 20:591-597.
    • (2005) Trends Ecol Evol. , vol.20 , pp. 591-597
    • De Bodt, S.1    Maere, S.2    Van De Peer, Y.3
  • 12
    • 0035808553 scopus 로고    scopus 로고
    • The chemical diversity and distribution of glucosinolates and isothiocyanates among plants
    • Fahey JW, Zalcmann AT, Talalay P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51.
    • (2001) Phytochemistry , vol.56 , pp. 5-51
    • Fahey, J.W.1    Zalcmann, A.T.2    Talalay, P.3
  • 13
    • 65249143921 scopus 로고    scopus 로고
    • Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event
    • Fawcett JA, Maere S, Van de Peer Y. 2009. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci U S A. 106:5737-5742.
    • (2009) Proc Natl Acad Sci U S A. , vol.106 , pp. 5737-5742
    • Fawcett, J.A.1    Maere, S.2    Van De Peer, Y.3
  • 14
    • 67651039811 scopus 로고    scopus 로고
    • Bias in plant gene content following different sorts of duplication: Tandem, whole-genome, segmental, or by transposition
    • Freeling M. 2009. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol. 60:433-453.
    • (2009) Annu Rev Plant Biol. , vol.60 , pp. 433-453
    • Freeling, M.1
  • 15
    • 33745610025 scopus 로고    scopus 로고
    • Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity
    • Freeling M, Thomas BC. 2006. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res. 16:805-814.
    • (2006) Genome Res. , vol.16 , pp. 805-814
    • Freeling, M.1    Thomas, B.C.2
  • 16
    • 57149120510 scopus 로고    scopus 로고
    • Many or most genes in Arabidopsis transposed after the origin of the order Brassicales
    • Freeling M, et al. 2008. Many or most genes in Arabidopsis transposed after the origin of the order Brassicales. Genome Res. 18:1924-1937.
    • (2008) Genome Res. , vol.18 , pp. 1924-1937
    • Freeling, M.1
  • 17
    • 38149043476 scopus 로고    scopus 로고
    • HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana
    • Gigolashvili T, Engqvist M, Yatusevich R, Muller C, Flugge UI. 2008. HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol. 177:627-642.
    • (2008) New Phytol. , vol.177 , pp. 627-642
    • Gigolashvili, T.1    Engqvist, M.2    Yatusevich, R.3    Muller, C.4    Flugge, U.I.5
  • 18
    • 34249809696 scopus 로고    scopus 로고
    • The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana
    • Gigolashvili T, et al. 2007. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 50:886-901.
    • (2007) Plant J. , vol.50 , pp. 886-901
    • Gigolashvili, T.1
  • 19
    • 70349243165 scopus 로고    scopus 로고
    • The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana
    • Gigolashvili T, et al. 2009. The plastidic bile acid transporter 5 is required for the biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana. Plant Cell 21:1813-1829.
    • (2009) Plant Cell , vol.21 , pp. 1813-1829
    • Gigolashvili, T.1
  • 20
    • 77950806408 scopus 로고    scopus 로고
    • New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0
    • Guindon S, et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59:307-321.
    • (2010) Syst Biol. , vol.59 , pp. 307-321
    • Guindon, S.1
  • 21
    • 34249783437 scopus 로고    scopus 로고
    • Identification of a flavinmonooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis
    • Hansen BG, Kliebenstein DJ, Halkier BA. 2007. Identification of a flavinmonooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Plant J. 50:902-910.
    • (2007) Plant J. , vol.50 , pp. 902-910
    • Hansen, B.G.1    Kliebenstein, D.J.2    Halkier, B.A.3
  • 22
    • 57749093230 scopus 로고    scopus 로고
    • A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis
    • Hansen BG, et al. 2008. A novel 2-oxoacid-dependent dioxygenase involved in the formation of the goiterogenic 2-hydroxybut-3-enyl glucosinolate and generalist insect resistance in Arabidopsis. Plant Physiol. 148:2096-2108.
    • (2008) Plant Physiol. , vol.148 , pp. 2096-2108
    • Hansen, B.G.1
  • 23
    • 36549024989 scopus 로고    scopus 로고
    • From waste products to ecochemicals: Fifty years research of plant secondary metabolism
    • Hartmann T. 2007. From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831-2846.
    • (2007) Phytochemistry , vol.68 , pp. 2831-2846
    • Hartmann, T.1
  • 24
    • 84881028642 scopus 로고    scopus 로고
    • An atlas of over 90, 000 conserved noncoding sequences provides insight into crucifer regulatory regions
    • Haudry A, et al. 2013. An atlas of over 90, 000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat Genet. 45:891-898.
    • (2013) Nat Genet. , vol.45 , pp. 891-898
    • Haudry, A.1
  • 25
    • 43149099706 scopus 로고    scopus 로고
    • The cancer chemopreventive actions of phytochemicals derived from glucosinolates
    • Hayes JD, Kelleher MO, Eggleston IM. 2008. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur J Nutr. 47(2 Suppl):73-88.
    • (2008) Eur J Nutr. , vol.47 , Issue.2 SUPPL. , pp. 73-88
    • Hayes, J.D.1    Kelleher, M.O.2    Eggleston, I.M.3
  • 26
    • 77956921275 scopus 로고    scopus 로고
    • Functional specification of Arabidopsis isopropylmalate isomerases in glucosinolate and leucine biosynthesis
    • He Y, Chen B, Pang Q, Strul JM, Chen S. 2010. Functional specification of Arabidopsis isopropylmalate isomerases in glucosinolate and leucine biosynthesis. Plant Cell Physiol. 51:1480-1487.
    • (2010) Plant Cell Physiol. , vol.51 , pp. 1480-1487
    • He, Y.1    Chen, B.2    Pang, Q.3    Strul, J.M.4    Chen, S.5
  • 27
    • 0034538640 scopus 로고    scopus 로고
    • Inhibition of carcinogenesis by isothiocyanates
    • Hecht SS. 2000. Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev. 32:395-411.
    • (2000) Drug Metab Rev. , vol.32 , pp. 395-411
    • Hecht, S.S.1
  • 28
    • 33746442049 scopus 로고    scopus 로고
    • Natural variation in MAM within and between populations of Arabidopsis lyrata determines glucosinolate phenotype
    • Heidel AJ, Clauss MJ, Kroymann J, Savolainen O, Mitchell-Olds T. 2006. Natural variation in MAM within and between populations of Arabidopsis lyrata determines glucosinolate phenotype. Genetics 173:1629-1636.
    • (2006) Genetics , vol.173 , pp. 1629-1636
    • Heidel, A.J.1    Clauss, M.J.2    Kroymann, J.3    Savolainen, O.4    Mitchell-Olds, T.5
  • 29
    • 34547526914 scopus 로고    scopus 로고
    • Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis
    • Hirai MY, et al. 2007. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci U S A. 104:6478-6483.
    • (2007) Proc Natl Acad Sci U S A. , vol.104 , pp. 6478-6483
    • Hirai, M.Y.1
  • 31
    • 0344287498 scopus 로고    scopus 로고
    • Non-random association of transposable elements with duplicated genomic blocks in Arabidopsis thaliana
    • Hughes AL, Friedman R, Ekollu V, Rose JR. 2003. Non-random association of transposable elements with duplicated genomic blocks in Arabidopsis thaliana. Mol Phylogenet Evol. 29:410-416.
    • (2003) Mol Phylogenet Evol. , vol.29 , pp. 410-416
    • Hughes, A.L.1    Friedman, R.2    Ekollu, V.3    Rose, J.R.4
  • 32
    • 22144453496 scopus 로고    scopus 로고
    • Flower development and evolution: Gene duplication, diversification and redeployment
    • Irish VF, Litt A. 2005. Flower development and evolution: gene duplication, diversification and redeployment. Curr Opin Genet Dev. 15:454-460.
    • (2005) Curr Opin Genet Dev. , vol.15 , pp. 454-460
    • Irish, V.F.1    Litt, A.2
  • 33
    • 79955630390 scopus 로고    scopus 로고
    • Ancestral polyploidy in seed plants and angiosperms
    • Jiao Y, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473:97-100.
    • (2011) Nature , vol.473 , pp. 97-100
    • Jiao, Y.1
  • 34
    • 77954426531 scopus 로고    scopus 로고
    • The evolution of a high copy gene array in Arabidopsis
    • Kane J, Freeling M, Lyons E. 2010. The evolution of a high copy gene array in Arabidopsis. J Mol Evol. 70:531-544.
    • (2010) J Mol Evol. , vol.70 , pp. 531-544
    • Kane, J.1    Freeling, M.2    Lyons, E.3
  • 35
    • 0037100671 scopus 로고    scopus 로고
    • MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform
    • Katoh K, Misawa K, Kuma K, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30:3059-3066.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 3059-3066
    • Katoh, K.1    Misawa, K.2    Kuma, K.3    Miyata, T.4
  • 36
    • 46649113144 scopus 로고    scopus 로고
    • A role for gene duplication and natural variation of gene expression in the evolution of metabolism
    • Kliebenstein DJ. 2008. A role for gene duplication and natural variation of gene expression in the evolution of metabolism. PLoS One 3:e1838.
    • (2008) PLoS One , vol.3
    • Kliebenstein, D.J.1
  • 37
    • 0035059714 scopus 로고    scopus 로고
    • Gene duplication in the diversification of secondary metabolism: Tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis
    • Kliebenstein DJ, Lambrix VM, Reichelt M, Gershenzon J, Mitchell-Olds T. 2001. Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:681-693.
    • (2001) Plant Cell , vol.13 , pp. 681-693
    • Kliebenstein, D.J.1    Lambrix, V.M.2    Reichelt, M.3    Gershenzon, J.4    Mitchell-Olds, T.5
  • 38
    • 0344198474 scopus 로고    scopus 로고
    • Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus
    • Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell-Olds T. 2003. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc Natl Acad Sci U S A. 100(2 Suppl):14587-14592.
    • (2003) Proc Natl Acad Sci U S A. , vol.100 , Issue.2 SUPPL. , pp. 14587-14592
    • Kroymann, J.1    Donnerhacke, S.2    Schnabelrauch, D.3    Mitchell-Olds, T.4
  • 39
    • 69649109364 scopus 로고    scopus 로고
    • Circos: An information aesthetic for comparative genomics
    • Krzywinski M, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Res. 19:1639-1645.
    • (2009) Genome Res. , vol.19 , pp. 1639-1645
    • Krzywinski, M.1
  • 40
    • 1242316239 scopus 로고    scopus 로고
    • Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene
    • Leister D. 2004. Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance gene. Trends Genet. 20:116-122.
    • (2004) Trends Genet. , vol.20 , pp. 116-122
    • Leister, D.1
  • 41
    • 57749110486 scopus 로고    scopus 로고
    • Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis
    • Li J, Hansen BG, Ober JA, Kliebenstein DJ, Halkier BA. 2008. Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis. Plant Physiol. 148:1721-1733.
    • (2008) Plant Physiol. , vol.148 , pp. 1721-1733
    • Li, J.1    Hansen, B.G.2    Ober, J.A.3    Kliebenstein, D.J.4    Halkier, B.A.5
  • 42
    • 38949151064 scopus 로고    scopus 로고
    • How to usefully compare homologous plant genes and chromosomes as DNA sequences
    • Lyons E, Freeling M. 2008. How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J. 53:661-673.
    • (2008) Plant J. , vol.53 , pp. 661-673
    • Lyons, E.1    Freeling, M.2
  • 43
    • 84855655273 scopus 로고    scopus 로고
    • Deconstruction of the (paleo) polyploid grapevine genome based on the analysis of transposition events involving NBS resistance genes
    • Malacarne G, et al. 2012. Deconstruction of the (paleo) polyploid grapevine genome based on the analysis of transposition events involving NBS resistance genes. PLoS One 7:e29762.
    • (2012) PLoS One , vol.7
    • Malacarne, G.1
  • 44
    • 78249232015 scopus 로고    scopus 로고
    • Glucosinolate biochemical diversity and innovation in the Brassicales
    • Mithen R, Bennett R, Marquez J. 2010. Glucosinolate biochemical diversity and innovation in the Brassicales. Phytochemistry 71:2074-2086.
    • (2010) Phytochemistry , vol.71 , pp. 2074-2086
    • Mithen, R.1    Bennett, R.2    Marquez, J.3
  • 45
    • 0034932451 scopus 로고    scopus 로고
    • Inhibition and inactivation of human cytochrome P450 isoforms by phenethyl isothiocyanate
    • Nakajima M, Yoshida R, Shimada N, Yamazaki H, Yokoi T. 2001. Inhibition and inactivation of human cytochrome P450 isoforms by phenethyl isothiocyanate. Drug Metab Dispos. 29:1110-1113.
    • (2001) Drug Metab Dispos. , vol.29 , pp. 1110-1113
    • Nakajima, M.1    Yoshida, R.2    Shimada, N.3    Yamazaki, H.4    Yokoi, T.5
  • 46
    • 33646832415 scopus 로고    scopus 로고
    • Genome-wide analysis of the ERF gene family in Arabidopsis and rice
    • Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140:411-432.
    • (2006) Plant Physiol. , vol.140 , pp. 411-432
    • Nakano, T.1    Suzuki, K.2    Fujimura, T.3    Shinshi, H.4
  • 47
    • 0141787883 scopus 로고    scopus 로고
    • CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis
    • Naur P, et al. 2003. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol. 133:63-72.
    • (2003) Plant Physiol. , vol.133 , pp. 63-72
    • Naur, P.1
  • 49
    • 0033083979 scopus 로고    scopus 로고
    • Homologues of the Cf-9 disease resistance gene (Hcr9s) are present at multiple loci on the short arm of tomato chromosome 1
    • Parniske M, et al. 1999. Homologues of the Cf-9 disease resistance gene (Hcr9s) are present at multiple loci on the short arm of tomato chromosome 1. Mol Plant Microbe Interact. 12:93-102.
    • (1999) Mol Plant Microbe Interact. , vol.12 , pp. 93-102
    • Parniske, M.1
  • 50
    • 66449095003 scopus 로고    scopus 로고
    • The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis
    • Pfalz M, Vogel H, Kroymann J. 2009. The gene controlling the indole glucosinolate modifier1 quantitative trait locus alters indole glucosinolate structures and aphid resistance in Arabidopsis. Plant Cell 21:985-999.
    • (2009) Plant Cell , vol.21 , pp. 985-999
    • Pfalz, M.1    Vogel, H.2    Kroymann, J.3
  • 51
    • 10944251699 scopus 로고    scopus 로고
    • Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure
    • Piotrowski M, et al. 2004. Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J Biol Chem. 279:50717-50725.
    • (2004) J Biol Chem. , vol.279 , pp. 50717-50725
    • Piotrowski, M.1
  • 52
    • 84865544969 scopus 로고    scopus 로고
    • A gain-of-function polymorphism controlling complex traits and fitness in nature
    • Prasad KV, et al. 2012. A gain-of-function polymorphism controlling complex traits and fitness in nature. Science 337:1081-1084.
    • (2012) Science , vol.337 , pp. 1081-1084
    • Prasad, K.V.1
  • 53
    • 0343262657 scopus 로고    scopus 로고
    • Myrosinase: Gene family evolution and herbivore defense in Brassicaceae
    • Rask L, et al. 2000. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol. 42:93-113.
    • (2000) Plant Mol Biol. , vol.42 , pp. 93-113
    • Rask, L.1
  • 54
    • 0034201441 scopus 로고    scopus 로고
    • EMBOSS: The European molecular biology open software suite
    • Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16:276-277.
    • (2000) Trends Genet. , vol.16 , pp. 276-277
    • Rice, P.1    Longden, I.2    Bleasby, A.3
  • 55
    • 33749357831 scopus 로고    scopus 로고
    • Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice
    • Rizzon C, Ponger L, Gaut BS. 2006. Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. PLoS Comput Biol. 2:e115.
    • (2006) PLoS Comput Biol. , vol.2
    • Rizzon, C.1    Ponger, L.2    Gaut, B.S.3
  • 56
    • 0032229116 scopus 로고    scopus 로고
    • Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies
    • Rodman J. 1998. Parallel evolution of glucosinolate biosynthesis inferred from congruent nuclear and plastid gene phylogenies. Am J Bot. 85:997.
    • (1998) Am J Bot. , vol.85 , pp. 997
    • Rodman, J.1
  • 57
    • 0030440415 scopus 로고    scopus 로고
    • Molecules, morphology, and Dahlgren's expanded order capparales
    • Rodman JE, Karol KG, Price RA, Sytsma KJ. 1996. Molecules, morphology, and Dahlgren's expanded order capparales. Syst Bot. 21:289-307.
    • (1996) Syst Bot. , vol.21 , pp. 289-307
    • Rodman, J.E.1    Karol, K.G.2    Price, R.A.3    Sytsma, K.J.4
  • 58
    • 33847214241 scopus 로고    scopus 로고
    • Evolution after gene duplication: Models, mechanisms, sequences, systems, and organisms
    • Roth C, et al. 2007. Evolution after gene duplication: models, mechanisms, sequences, systems, and organisms. J Exp Zool B Mol Dev Evol. 308:58-73.
    • (2007) J Exp Zool B Mol Dev Evol. , vol.308 , pp. 58-73
    • Roth, C.1
  • 59
    • 67651111980 scopus 로고    scopus 로고
    • Omics-based approaches to methionine side chain elongation in Arabidopsis: Characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase
    • Sawada Y, et al. 2009. Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase. Plant Cell Physiol. 50:1181-1190.
    • (2009) Plant Cell Physiol. , vol.50 , pp. 1181-1190
    • Sawada, Y.1
  • 60
    • 79959819390 scopus 로고    scopus 로고
    • Comparative genomics in the Brassicales: Ancient genome duplications, glucosinolate diversification and pierinae herbivore radiation
    • Edwards D, Batley J, Parkin I, Kole C, editors, Boca Raton FL: CRC press
    • Schranz ME, Edger PP, Pires JC, van Dam NM, Wheat CW. 2011. Comparative genomics in the Brassicales: ancient genome duplications, glucosinolate diversification and pierinae herbivore radiation. In: Edwards D, Batley J, Parkin I, Kole C, editors. Genetics, genomics and breeding in crop plants. Boca Raton (FL): CRC press. p. 206-218.
    • (2011) Genetics, Genomics and Breeding in Crop plants. , pp. 206-218
    • Schranz, M.E.1    Edger, P.P.2    Pires, J.C.3    Van Dam, N.M.4    Wheat, C.W.5
  • 61
    • 84859917501 scopus 로고    scopus 로고
    • Ancient whole genome duplications, novelty and diversification: The WGD Radiation Lag-Time Model
    • Schranz ME, Mohammadin S, Edger PP. 2012. Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model. Curr Opin Plant Biol. 15:147-153.
    • (2012) Curr Opin Plant Biol. , vol.15 , pp. 147-153
    • Schranz, M.E.1    Mohammadin, S.2    Edger, P.P.3
  • 62
  • 63
    • 44549084434 scopus 로고    scopus 로고
    • Activities of Arabidopsis sinapoylglucose: Malate sinapoyltransferase shed light on functional diversification of serine carboxypeptidase-like acyltransferases
    • Stehle F, Brandt W, Schmidt J, Milkowski C, Strack D. 2008. Activities of Arabidopsis sinapoylglucose: malate sinapoyltransferase shed light on functional diversification of serine carboxypeptidase-like acyltransferases. Phytochemistry 69:1826-1831.
    • (2008) Phytochemistry , vol.69 , pp. 1826-1831
    • Stehle, F.1    Brandt, W.2    Schmidt, J.3    Milkowski, C.4    Strack, D.5
  • 64
    • 84879472582 scopus 로고    scopus 로고
    • Unleashing the genome of Brassica rapa
    • Tang H, Lyons E. 2012. Unleashing the genome of Brassica rapa. Front Plant Sci. 3:172.
    • (2012) Front Plant Sci. , vol.3 , pp. 172
    • Tang, H.1    Lyons, E.2
  • 65
    • 34250663450 scopus 로고    scopus 로고
    • MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis
    • Textor S, de Kraker JW, Hause B, Gershenzon J, Tokuhisa JG. 2007. MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiol. 144:60-71.
    • (2007) Plant Physiol. , vol.144 , pp. 60-71
    • Textor, S.1    De Kraker, J.W.2    Hause, B.3    Gershenzon, J.4    Tokuhisa, J.G.5
  • 66
    • 33745617700 scopus 로고    scopus 로고
    • Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes
    • Thomas BC, Pedersen B, Freeling M. 2006. Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res. 16:934-946.
    • (2006) Genome Res. , vol.16 , pp. 934-946
    • Thomas, B.C.1    Pedersen, B.2    Freeling, M.3
  • 67
    • 77953176569 scopus 로고    scopus 로고
    • Gene transposition causing natural variation for growth in Arabidopsis thaliana
    • Vlad D, Rappaport F, Simon M, Loudet O. 2010. Gene transposition causing natural variation for growth in Arabidopsis thaliana. PLoS Genet. 6:e1000945.
    • (2010) PLoS Genet. , vol.6
    • Vlad, D.1    Rappaport, F.2    Simon, M.3    Loudet, O.4
  • 68
    • 80052888450 scopus 로고    scopus 로고
    • Glucosinolate biosynthetic genes in Brassica rapa
    • Wang H, et al. 2011a. Glucosinolate biosynthetic genes in Brassica rapa. Gene 487:135-142.
    • (2011) Gene , vol.487 , pp. 135-142
    • Wang, H.1
  • 69
    • 84874782723 scopus 로고    scopus 로고
    • Transposon variants and their effects on gene expression in Arabidopsis
    • Wang X, Weigel D, Smith LM. 2013. Transposon variants and their effects on gene expression in Arabidopsis. PLoS Genet. 9:e1003255.
    • (2013) PLoS Genet. , vol.9
    • Wang, X.1    Weigel, D.2    Smith, L.M.3
  • 70
    • 80053386792 scopus 로고    scopus 로고
    • The genome of the mesopolyploid crop species Brassica rapa
    • Wang X, et al. 2011b. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet. 43:1035-1039.
    • (2011) Nat Genet. , vol.43 , pp. 1035-1039
    • Wang, X.1
  • 71
    • 82555185713 scopus 로고    scopus 로고
    • Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms
    • Wang Y, et al. 2011c. Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoS One 6:e28150.
    • (2011) PLoS One , vol.6
    • Wang, Y.1
  • 72
    • 57749195712 scopus 로고    scopus 로고
    • RNA-Seq: A revolutionary tool for transcriptomics
    • Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 10:57-63.
    • (2009) Nat Rev Genet. , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 73
    • 34848837299 scopus 로고    scopus 로고
    • Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways
    • Wentzell AM, et al. 2007. Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genet. 3:1687-1701.
    • (2007) PLoS Genet. , vol.3 , pp. 1687-1701
    • Wentzell, A.M.1
  • 74
    • 77956284088 scopus 로고    scopus 로고
    • Patching gaps in plant genomes results in gene movement and erosion of colinearity
    • Wicker T, Buchmann JP, Keller B. 2010. Patching gaps in plant genomes results in gene movement and erosion of colinearity. Genome Res. 20:1229-1237.
    • (2010) Genome Res. , vol.20 , pp. 1229-1237
    • Wicker, T.1    Buchmann, J.P.2    Keller, B.3
  • 75
    • 20444370659 scopus 로고    scopus 로고
    • Geographic and evolutionary diversification of glucosinolates among near relatives of Arabidopsis thaliana (Brassicaceae)
    • Windsor AJ, et al. 2005. Geographic and evolutionary diversification of glucosinolates among near relatives of Arabidopsis thaliana (Brassicaceae). Phytochemistry 66:1321-1333.
    • (2005) Phytochemistry , vol.66 , pp. 1321-1333
    • Windsor, A.J.1
  • 77
    • 84856480832 scopus 로고    scopus 로고
    • Different gene families in Arabidopsis thaliana transposed in different epochs and at different frequencies throughout the rosids
    • Woodhouse MR, Tang H, Freeling M. 2011. Different gene families in Arabidopsis thaliana transposed in different epochs and at different frequencies throughout the rosids. Plant Cell 23:4241-4253.
    • (2011) Plant Cell , vol.23 , pp. 4241-4253
    • Woodhouse, M.R.1    Tang, H.2    Freeling, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.