메뉴 건너뛰기




Volumn 52, Issue 4, 2014, Pages 2186-2196

Bayesian active remote sensing image classification

Author keywords

Bayesian inference; Incremental active learning; Multispectral image segmentation; Supervised classification

Indexed keywords

BAYESIAN NETWORKS; ENTROPY; IMAGE RECONSTRUCTION; INFERENCE ENGINES; PARAMETER ESTIMATION; SPECTROSCOPY; SUPPORT VECTOR MACHINES; SYNTHETIC APERTURE RADAR; TARGET TRACKING;

EID: 84892431839     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2013.2258468     Document Type: Article
Times cited : (53)

References (47)
  • 2
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 5
    • 0001224048 scopus 로고    scopus 로고
    • The relevance vector machine
    • May
    • M. E. Tipping, "The relevance vector machine," J. Mach. Learn. Res., vol. 1, pp. 211-244, May 2001.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 6
    • 34347244506 scopus 로고    scopus 로고
    • Texture features for antitank landmine detection using ground penetrating radar
    • DOI 10.1109/TGRS.2007.896548
    • P. Torrione and L. Collins, "Texture features for antitank landmine detection using ground penetrating radar," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 7, pp. 2374-2382, Jul. 2007. (Pubitemid 47000303)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.7 , pp. 2374-2382
    • Torrione, P.1    Collins, L.M.2
  • 7
    • 79957643015 scopus 로고    scopus 로고
    • Robust hyperspectral classification using relevance vector machine
    • Jun
    • F. A. Mianji and Y. Zhang, "Robust hyperspectral classification using relevance vector machine," IEEE Trans. Geosci. Remote Sensing, vol. 49, no. 6, pp. 2100-2112, Jun. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sensing , vol.49 , Issue.6 , pp. 2100-2112
    • Mianji, F.A.1    Zhang, Y.2
  • 10
    • 73249137938 scopus 로고    scopus 로고
    • Gaussian process approach to remote sensing image classification
    • Jan
    • Y. Bazi and F. Melgani, "Gaussian process approach to remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 1, pp. 186-197, Jan. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.1 , pp. 186-197
    • Bazi, Y.1    Melgani, F.2
  • 11
    • 79959705257 scopus 로고    scopus 로고
    • Spatially adaptive classification of land cover with remote sensing data
    • Jul
    • G. Jun and J. Ghosh, "Spatially adaptive classification of land cover with remote sensing data," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 7, pp. 2662-2673, Jul. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.7 , pp. 2662-2673
    • Jun, G.1    Ghosh, J.2
  • 12
    • 84860332507 scopus 로고    scopus 로고
    • Retrieval of vegetation biophysical parameters using gaussian process techniques
    • May
    • J. Verrelst, L. Alonso, G. Camps-Valls, J. Delegido, and J. Moreno, "Retrieval of vegetation biophysical parameters using gaussian process techniques," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 5, pp. 1832-1843, May 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.5 , pp. 1832-1843
    • Verrelst, J.1    Alonso, L.2    Camps-Valls, G.3    Delegido, J.4    Moreno, J.5
  • 13
    • 0004176090 scopus 로고
    • London, U.K.: Arnold, ch. 10
    • A. O'Hagan, Bayesian Inference, vol. 2B. London, U.K.: Arnold, 1994, ch. 10.
    • (1994) Bayesian Inference , vol.2 B
    • O'hagan, A.1
  • 16
    • 0003238552 scopus 로고    scopus 로고
    • Incremental and decremental support vector machine learning
    • Cambridge, MA, USA: MIT Press
    • G. Cauwenberghs and T. Poggio, "Incremental and decremental support vector machine learning," in Advances in Neural Information Processing Systems, Cambridge, MA, USA: MIT Press, 2000, pp. 409-415.
    • (2000) Advances in Neural Information Processing Systems , pp. 409-415
    • Cauwenberghs, G.1    Poggio, T.2
  • 18
    • 33745777639 scopus 로고    scopus 로고
    • Incremental support vector learning: Analysis, implementation and applications
    • P. Laskov, C. Gehl, S. Kruger, and K.-R. Müller, "Incremental support vector learning: Analysis implementation and applications," J. Mach. Learn. Res., vol. 7, no. 9, pp. 1909-1936, 2006. (Pubitemid 44477117)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1909-1936
    • Laskov, P.1    Gehl, C.2    Kruger, S.3    Muller, K.-R.4
  • 19
    • 0038891993 scopus 로고    scopus 로고
    • Sparse on-line Gaussian processes
    • L. Csató and M. Opper, "Sparse on-line Gaussian processes," Neural Comput., vol. 14, no. 3, pp. 641-668, 2002.
    • (2002) Neural Comput. , vol.14 , Issue.3 , pp. 641-668
    • Csató, L.1    Opper, M.2
  • 21
    • 68949137209 scopus 로고    scopus 로고
    • Dept. Computer Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1648
    • B. Settles, "Active learning literature survey," Dept. Computer Sci., Univ. Wisconsin-Madison, Madison, WI, USA, Tech. Rep. 1648, 2009.
    • (2009) Active Learning Literature Survey
    • Settles, B.1
  • 23
    • 0005077356 scopus 로고    scopus 로고
    • Active learning for parameter estimation in Bayesian networks
    • Cambridge, MA, USA: MIT Press
    • S. Tong and D. Koller, "Active learning for parameter estimation in Bayesian networks," in Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2000, pp. 647-653.
    • (2000) Advances in Neural Information Processing Systems , pp. 647-653
    • Tong, S.1    Koller, D.2
  • 24
    • 77951218308 scopus 로고    scopus 로고
    • Active learning and basis selection for kernel-based linear models: A Bayesian perspective
    • May
    • J. Paisley, X. Liao, and L. Carin, "Active learning and basis selection for kernel-based linear models: A Bayesian perspective," IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2686-2700, May 2010.
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.5 , pp. 2686-2700
    • Paisley, J.1    Liao, X.2    Carin, L.3
  • 26
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new Bayesian approach with active learning
    • Oct
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Hyperspectral image segmentation using a new Bayesian approach with active learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3947-3960, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 27
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. Burges, "A tutorial on support vector machines for pattern recognition," Data Mining Knowl. Discovery, vol. 2, no. 2, pp. 121-167, 1998. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 29
    • 72949095917 scopus 로고    scopus 로고
    • Bayesian compressive sensing using Laplace priors
    • Jan
    • D. Babacan, R. Molina, and A. Katsaggelos, "Bayesian compressive sensing using Laplace priors," IEEE Trans. Image Process., vol. 19, no. 1, pp. 53-63, Jan. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.1 , pp. 53-63
    • Babacan, D.1    Molina, R.2    Katsaggelos, A.3
  • 30
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • D. J. C. MacKay, "Information-based objective functions for active data selection," Neural Comput., vol. 4, no. 4, pp. 590-604, 1992.
    • (1992) Neural Comput. , vol.4 , Issue.4 , pp. 590-604
    • Mackay, D.J.C.1
  • 31
  • 32
    • 2942558578 scopus 로고    scopus 로고
    • Segmentation of multispectral remote sensing images using active support vector machines
    • DOI 10.1016/j.patrec.2004.03.004, PII S0167865504000704
    • P. Mitra, B. U. Shankar, and S. Pal, "Segmentation of multispectral remote sensing images using active support vector machines," Pattern Recognit. Lett., vol. 25, no. 9, pp. 1067-1074, 2004. (Pubitemid 38763570)
    • (2004) Pattern Recognition Letters , vol.25 , Issue.9 , pp. 1067-1074
    • Mitra, P.1    Uma Shankar, B.2    Pal, S.K.3
  • 33
    • 79952041537 scopus 로고    scopus 로고
    • Batch mode active learning methods for the interactive classification of remote sensing images
    • Mar
    • B. Demir, C. Persello, and L. Bruzzone, "Batch mode active learning methods for the interactive classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 1014-1032, Mar. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 1014-1032
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 34
    • 79955522957 scopus 로고    scopus 로고
    • SVM active learning through significance space construction
    • May
    • E. Pasolli, F. Melgani, and Y. Bazi, "SVM active learning through significance space construction," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 431-435, May 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.3 , pp. 431-435
    • Pasolli, E.1    Melgani, F.2    Bazi, Y.3
  • 35
    • 33947617297 scopus 로고    scopus 로고
    • Interactive remote-sensing image retrieval using active relevance feedback
    • DOI 10.1109/TGRS.2007.892007
    • M. Ferecatu and N. Boujemaa, "Interactive remote sensing image retrieval using active relevance feedback," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 818-826, Apr. 2007. (Pubitemid 46495617)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.4 , pp. 818-826
    • Ferecatu, M.1    Boujemaa, N.2
  • 36
  • 37
    • 84864278874 scopus 로고    scopus 로고
    • Memory-based cluster sampling for remote sensing image classification
    • Aug
    • M. Volpi, D. Tuia, and M. Kanevski, "Memory-based cluster sampling for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 8, pp. 3096-3106, Aug. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.8 , pp. 3096-3106
    • Volpi, M.1    Tuia, D.2    Kanevski, M.3
  • 38
    • 50549095916 scopus 로고    scopus 로고
    • Detection of unexploded ordnance via efficient semisupervised and active learning
    • Sep
    • Q. Liu, X. Liao, and L. Carin, "Detection of unexploded ordnance via efficient semisupervised and active learning," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 9, pp. 2558-2567, Sep. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.9 , pp. 2558-2567
    • Liu, Q.1    Liao, X.2    Carin, L.3
  • 39
    • 78049282844 scopus 로고    scopus 로고
    • Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Nov
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085-4098, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 40
    • 79957460116 scopus 로고    scopus 로고
    • Using active learning to adapt remote sensing image classifiers
    • D. Tuia, E. Pasolli, and W. Emery, "Using active learning to adapt remote sensing image classifiers," Remote Sens. Environ., vol. 115, no. 9, pp. 2232-2242, 2011.
    • (2011) Remote Sens. Environ. , vol.115 , Issue.9 , pp. 2232-2242
    • Tuia, D.1    Pasolli, E.2    Emery, W.3
  • 41
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Jun
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Muñoz-Marí, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 606-617, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Muñoz-Marí, J.5
  • 42
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs-all classification
    • Dec
    • R. Rifkin and A. Klautau, "In defense of one-vs-all classification," J. Mach. Learn. Res., vol. 5, pp. 101-141, Dec. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 43
    • 0033078391 scopus 로고    scopus 로고
    • Bayesian and regularization methods for hyperparameter estimation in image restoration
    • Feb
    • R. Molina, A. K. Katsaggelos, and J. Mateos, "Bayesian and regularization methods for hyperparameter estimation in image restoration," IEEE Trans. Image Process., vol. 8, no. 2, pp. 231-246, Feb. 1999.
    • (1999) IEEE Trans. Image Process. , vol.8 , Issue.2 , pp. 231-246
    • Molina, R.1    Katsaggelos, A.K.2    Mateos, J.3
  • 45
    • 0000597408 scopus 로고    scopus 로고
    • Comparison of approximate methods for handling hyperparameters
    • D. J. C. MacKay, "Comparison of approximate methods for handling hyperparameters," Neural Comput., vol. 11, no. 5, pp. 1035-1068, 1999.
    • (1999) Neural Comput. , vol.11 , Issue.5 , pp. 1035-1068
    • Mackay, D.J.C.1
  • 46
    • 30344462676 scopus 로고    scopus 로고
    • Urban monitoring using multi-temporal SAR and multi-spectral data
    • DOI 10.1016/j.patrec.2005.08.004, PII S0167865505002175, Pattern Recognition in Remote Sensing (PRRS 2004)
    • L. Gomez-Chova, D. Fernández-Prieto, J. Calpe, E. Soria, J. Vila- Francés, and G. Camps-Valls, "Urban monitoring using multitemporal SAR and multispectral data," Pattern Recognit. Lett., vol. 27, no. 4, pp. 234-243, 2006. (Pubitemid 43063105)
    • (2006) Pattern Recognition Letters , vol.27 , Issue.4 , pp. 234-243
    • Gomez-Chova, L.1    Fernandez-Prieto, D.2    Calpe, J.3    Soria, E.4    Vila, J.5    Camps-Valls, G.6
  • 47
    • 84880272655 scopus 로고    scopus 로고
    • Synthesis lectures on image, video, and multimedia processing
    • A. Bovik, Ed. LaPorte, CO, USA: Morgan & Claypool, Sep
    • G. Camps-Valls, D. Tuia, L. Gómez-Chova, S. Jiménez, and J. Malo, "Synthesis Lectures on Image, Video, and Multimedia Processing," in Remote Sensing Image Processing, A. Bovik, Ed. LaPorte, CO, USA: Morgan & Claypool, Sep. 2011.
    • (2011) Remote Sensing Image Processing
    • Camps-Valls, G.1    Tuia, D.2    Gómez-Chova, L.3    Jiménez, S.4    Malo, J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.