메뉴 건너뛰기




Volumn , Issue , 2008, Pages 912-919

Compressed sensing and Bayesian experimental design

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; COMPRESSED SENSING; MACHINE LEARNING; STATISTICS; LEARNING SYSTEMS; ROBOT LEARNING; SIGNAL RECONSTRUCTION;

EID: 56449114803     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1390156.1390271     Document Type: Conference Paper
Times cited : (106)

References (13)
  • 1
    • 36248991673 scopus 로고    scopus 로고
    • Practical signal recovery from random projections
    • Candès, E., & Romberg, J. (2004). Practical signal recovery from random projections. Proceedings of SPIE.
    • (2004) Proceedings of SPIE
    • Candès, E.1    Romberg, J.2
  • 2
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • Candès, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theo., 52, 489-509.
    • (2006) IEEE Trans. Inf. Theo , vol.52 , pp. 489-509
    • Candès, E.1    Romberg, J.2    Tao, T.3
  • 3
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Donoho, D. (2006). Compressed sensing. IEEE Trans. Inf. Theo., 52, 1289-1306.
    • (2006) IEEE Trans. Inf. Theo , vol.52 , pp. 1289-1306
    • Donoho, D.1
  • 6
    • 85162021749 scopus 로고    scopus 로고
    • Bayesian inference for spiking neuron models with a sparsity prior
    • Gerwinn, S., Macke, J., Seeger, M., & Bethge, M. (2008). Bayesian inference for spiking neuron models with a sparsity prior. Advances in NIPS 20.
    • (2008) Advances in NIPS , vol.20
    • Gerwinn, S.1    Macke, J.2    Seeger, M.3    Bethge, M.4
  • 7
    • 34547990838 scopus 로고    scopus 로고
    • Bayesian compressive sensing and projection optimization
    • Ji, S., & Carin, L. (2007). Bayesian compressive sensing and projection optimization. Proceedings of ICML 24.
    • (2007) Proceedings of ICML 24
    • Ji, S.1    Carin, L.2
  • 8
    • 0011965365 scopus 로고    scopus 로고
    • Expectation propagation for approximate Bayesian inference
    • Minka, T. (2001). Expectation propagation for approximate Bayesian inference. Uncertainty in AI 17.
    • (2001) Uncertainty in AI , vol.17
    • Minka, T.1
  • 9
    • 44649181578 scopus 로고    scopus 로고
    • Bayesian inference and optimal design in the sparse linear model
    • To appear in
    • Seeger, M. (2008). Bayesian inference and optimal design in the sparse linear model. To appear in Journal of Machine Learning Research.
    • (2008) Journal of Machine Learning Research
    • Seeger, M.1
  • 10
    • 38049145045 scopus 로고    scopus 로고
    • Bayesian inference and optimal design in the sparse linear model
    • Seeger, M., Steinke, F., & Tsuda, K. (2007). Bayesian inference and optimal design in the sparse linear model. AI and Statistics 11.
    • (2007) AI and Statistics , vol.11
    • Seeger, M.1    Steinke, F.2    Tsuda, K.3
  • 11
    • 0033318388 scopus 로고    scopus 로고
    • Modeling the joint statistics of images in the Wavelet domain
    • Simoncelli, E. (1999). Modeling the joint statistics of images in the Wavelet domain. Proceedings 44th SPIE (pp. 188-195).
    • (1999) Proceedings 44th SPIE , pp. 188-195
    • Simoncelli, E.1
  • 12
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M. (2001). Sparse Bayesian learning and the relevance vector machine. J. M. Learn. Res., 1, 211-244.
    • (2001) J. M. Learn. Res , vol.1 , pp. 211-244
    • Tipping, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.