메뉴 건너뛰기




Volumn 115, Issue 2, 2014, Pages

Monte Carlo simulations of phonon transport in nanoporous silicon and germanium

Author keywords

[No Author keywords available]

Indexed keywords

BOLTZMANN TRANSPORT EQUATION; EFFECTIVE MEDIUM; MEAN FREE PATH; MONTE CARLO TECHNIQUES; NANO-POROUS SILICON; PHONON MEAN FREE PATH; PHONON TRANSPORT; STATISTICAL APPROACH;

EID: 84892396675     PISSN: 00218979     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.4861410     Document Type: Article
Times cited : (101)

References (61)
  • 1
    • 0141775174 scopus 로고
    • Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers
    • 10.1063/1.103561
    • L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers., Appl. Phys. Lett. 57 (10), 1046 (1990). 10.1063/1.103561
    • (1990) Appl. Phys. Lett. , vol.57 , Issue.10 , pp. 1046
    • Canham, L.T.1
  • 2
    • 0001753504 scopus 로고    scopus 로고
    • The structural and luminescence properties of porous silicon
    • 10.1063/1.366536
    • A. G. Cullis, L. T. Canham, and P. D. J. Calcott, The structural and luminescence properties of porous silicon., J. Appl. Phys. 82 (3), 909 (1997). 10.1063/1.366536
    • (1997) J. Appl. Phys. , vol.82 , Issue.3 , pp. 909
    • Cullis, A.G.1    Canham, L.T.2    Calcott, P.D.J.3
  • 3
    • 77956837871 scopus 로고    scopus 로고
    • Porous Silicon-A versatile host material
    • 10.3390/ma3020943
    • P. Granitzer and K. Rumpf, Porous Silicon-A versatile host material., Materials 3 (2), 943-998 (2010). 10.3390/ma3020943
    • (2010) Materials , vol.3 , Issue.2 , pp. 943-998
    • Granitzer, P.1    Rumpf, K.2
  • 4
    • 31144474014 scopus 로고    scopus 로고
    • High surface area silicon materials: Fundamentals and new technology
    • 10.1098/rsta.2005.1681
    • J. M. Buriak, High surface area silicon materials: Fundamentals and new technology., Philos. Trans. R. Soc., A 364 (1838), 217-225 (2006). 10.1098/rsta.2005.1681
    • (2006) Philos. Trans. R. Soc., A , vol.364 , Issue.1838 , pp. 217-225
    • Buriak, J.M.1
  • 5
    • 31144465195 scopus 로고    scopus 로고
    • Why engineer porous materials?
    • 10.1098/rsta.2005.1686
    • A. Kelly, Why engineer porous materials?, Phil. Trans. R. Soc., A 364 (1838), 5-14 (2006). 10.1098/rsta.2005.1686
    • (2006) Phil. Trans. R. Soc., A , vol.364 , Issue.1838 , pp. 5-14
    • Kelly, A.1
  • 6
    • 0033687514 scopus 로고    scopus 로고
    • Chemical and biological applications of porous silicon technology
    • 10.1002/1521-4095(200006)12:12<859::AID-ADMA859>3.0.CO;2-0
    • M. P. Stewart and J. M. Buriak, Chemical and biological applications of porous silicon technology., Adv. Mater. 12 (12), 859-869 (2000). 10.1002/1521-4095(200006)12:12<859::AID-ADMA859>3.0.CO;2-0
    • (2000) Adv. Mater. , vol.12 , Issue.12 , pp. 859-869
    • Stewart, M.P.1    Buriak, J.M.2
  • 8
    • 0031069132 scopus 로고    scopus 로고
    • Evaluation of thermal conductivity of porous silicon layers by a photoacoustic method
    • 10.1007/s003390050457
    • G. Benedetto, L. Boarino, and R. Spagnolo, Evaluation of thermal conductivity of porous silicon layers by a photoacoustic method., Appl. Phys. A: Mater. Sci. Process. 64 (2), 155-159 (1997). 10.1007/s003390050457
    • (1997) Appl. Phys. A: Mater. Sci. Process. , vol.64 , Issue.2 , pp. 155-159
    • Benedetto, G.1    Boarino, L.2    Spagnolo, R.3
  • 9
    • 0031558607 scopus 로고    scopus 로고
    • Temperature-dependent thermal conductivity of porous silicon
    • 10.1088/0022-3727/30/21/001
    • G. Gesele, J. Linsmeier, V. Drach, J. Fricke, and R. Arens-Fischer, Temperature-dependent thermal conductivity of porous silicon., J. Appl. Phys. D: Appl. Phys. 30 (21), 2911 (1997). 10.1088/0022-3727/30/21/001
    • (1997) J. Appl. Phys. D: Appl. Phys. , vol.30 , Issue.21 , pp. 2911
    • Gesele, G.1    Linsmeier, J.2    Drach, V.3    Fricke, J.4    Arens-Fischer, R.5
  • 10
    • 85019836348 scopus 로고    scopus 로고
    • Optical properties of nanostructured silicon
    • (Elsevier), Vol. 1.
    • Y. Chao, Optical properties of nanostructured silicon., in Comprehensive Nanoscience and Technology (Elsevier, 2011), Vol. 1.
    • (2011) Comprehensive Nanoscience and Technology
    • Chao, Y.1
  • 11
    • 63749118906 scopus 로고    scopus 로고
    • Microfabricated phononic crystal devices and applications
    • 10.1088/0957-0233/20/1/012002
    • R. H. Olsson III and I. El-Kady, Microfabricated phononic crystal devices and applications., Meas. Sci. Technol. 20 (1), 012002 (2009). 10.1088/0957-0233/20/1/012002
    • (2009) Meas. Sci. Technol. , vol.20 , Issue.1 , pp. 012002
    • Olsson III, R.H.1    El-Kady, I.2
  • 13
    • 77952793372 scopus 로고    scopus 로고
    • Comparison of optical absorption in si nanowire and nanoporous si structures for photovoltaic applications
    • 10.1063/1.3427407
    • Z. Xiong, F. Zhao, J. Yang, and X. Hu, Comparison of optical absorption in si nanowire and nanoporous si structures for photovoltaic applications., Appl. Phys. Lett. 96 (18), 181903 (2010). 10.1063/1.3427407
    • (2010) Appl. Phys. Lett. , vol.96 , Issue.18 , pp. 181903
    • Xiong, Z.1    Zhao, F.2    Yang, J.3    Hu, X.4
  • 14
    • 84872122697 scopus 로고    scopus 로고
    • Narrow low-frequency spectrum and heat management by thermocrystals
    • 10.1103/PhysRevLett.110.025902
    • M. Maldovan, Narrow low-frequency spectrum and heat management by thermocrystals., Phys. Rev. Lett. 110 (2), 025902 (2013). 10.1103/PhysRevLett. 110.025902
    • (2013) Phys. Rev. Lett. , vol.110 , Issue.2 , pp. 025902
    • Maldovan, M.1
  • 15
    • 29844450239 scopus 로고    scopus 로고
    • Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction
    • 10.1103/PhysRevB.72.125418
    • R. Yang, G. Chen, and M. Dresselhaus, Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction., Phys. Rev. B 72 (12), 125418 (2005). 10.1103/PhysRevB.72.125418
    • (2005) Phys. Rev. B , vol.72 , Issue.12 , pp. 125418
    • Yang, R.1    Chen, G.2    Dresselhaus, M.3
  • 16
    • 34548035431 scopus 로고    scopus 로고
    • Modified effective medium formulation for the thermal conductivity of nanocomposites
    • 10.1063/1.2771040
    • A. Minnich and G. Chen, Modified effective medium formulation for the thermal conductivity of nanocomposites., Appl. Phys. Lett. 91 (7), 073105 (2007). 10.1063/1.2771040
    • (2007) Appl. Phys. Lett. , vol.91 , Issue.7 , pp. 073105
    • Minnich, A.1    Chen, G.2
  • 17
    • 41649094407 scopus 로고    scopus 로고
    • Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation
    • 10.1115/1.2818765
    • M.-S. Jeng, R. Yang, D. Song, and G. Chen, Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation., J. Heat Transfer 130 (4), 042410 (2008). 10.1115/1.2818765
    • (2008) J. Heat Transfer , vol.130 , Issue.4 , pp. 042410
    • Jeng, M.-S.1    Yang, R.2    Song, D.3    Chen, G.4
  • 18
    • 0009642109 scopus 로고    scopus 로고
    • Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon
    • 10.1016/S0017-9310(99)00165-9
    • J. D. Chung and M. Kaviany, Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon., Int. J. Heat Mass Transfer 43 (4), 521-538 (2000). 10.1016/S0017-9310(99)00165-9
    • (2000) Int. J. Heat Mass Transfer , vol.43 , Issue.4 , pp. 521-538
    • Chung, J.D.1    Kaviany, M.2
  • 19
    • 40849094591 scopus 로고    scopus 로고
    • Monte Carlo simulation of cross-plane thermal conductivity of nanostructured porous silicon films
    • 10.1063/1.2841697
    • J. Randrianalisoa and D. Baillis, Monte Carlo simulation of cross-plane thermal conductivity of nanostructured porous silicon films., J. Appl. Phys. 103 (5), 053502 (2008). 10.1063/1.2841697
    • (2008) J. Appl. Phys. , vol.103 , Issue.5 , pp. 053502
    • Randrianalisoa, J.1    Baillis, D.2
  • 20
    • 33747354364 scopus 로고    scopus 로고
    • Thermal conductivity of composites of aligned nanoscale and microscale wires and pores
    • 10.1063/1.2219162
    • R. Prasher, Thermal conductivity of composites of aligned nanoscale and microscale wires and pores., J. Appl. Phys. 100 (3), 034307 (2006). 10.1063/1.2219162
    • (2006) J. Appl. Phys. , vol.100 , Issue.3 , pp. 034307
    • Prasher, R.1
  • 21
    • 33749339029 scopus 로고    scopus 로고
    • Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores
    • 10.1063/1.2337786
    • R. Prasher, Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores., J. Appl. Phys. 100 (6), 064302 (2006). 10.1063/1.2337786
    • (2006) J. Appl. Phys. , vol.100 , Issue.6 , pp. 064302
    • Prasher, R.1
  • 22
    • 72449153398 scopus 로고    scopus 로고
    • Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores
    • 10.1063/1.3266169
    • Q. Hao, G. Chen, and M.-S. Jeng, Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores., J. Appl. Phys. 106 (11), 114321 (2009). 10.1063/1.3266169
    • (2009) J. Appl. Phys. , vol.106 , Issue.11 , pp. 114321
    • Hao, Q.1    Chen, G.2    Jeng, M.-S.3
  • 23
    • 84860888703 scopus 로고    scopus 로고
    • Mesoscale modeling of phononic thermal conductivity of porous si: Interplay between porosity, morphology and surface roughness
    • 10.1007/s10825-012-0390-2
    • G. Romano, A. Carlo, and J. C. Grossman, Mesoscale modeling of phononic thermal conductivity of porous si: Interplay between porosity, morphology and surface roughness., J. Comput. Electron. 11 (1), 8-13 (2012). 10.1007/s10825-012-0390-2
    • (2012) J. Comput. Electron. , vol.11 , Issue.1 , pp. 8-13
    • Romano, G.1    Carlo, A.2    Grossman, J.C.3
  • 24
    • 84863535642 scopus 로고    scopus 로고
    • Thermal conductivity modeling of periodic porous silicon with aligned cylindrical pores
    • 10.1063/1.4730962
    • T.-Y. Hsieh, H. Lin, T.-J. Hsieh, and J.-C. Huang, Thermal conductivity modeling of periodic porous silicon with aligned cylindrical pores., J. Appl. Phys. 111 (12), 124329 (2012). 10.1063/1.4730962
    • (2012) J. Appl. Phys. , vol.111 , Issue.12 , pp. 124329
    • Hsieh, T.-Y.1    Lin, H.2    Hsieh, T.-J.3    Huang, J.-C.4
  • 25
    • 84855301467 scopus 로고    scopus 로고
    • Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique
    • 10.1063/1.3675918
    • C. M. Reinke, M. F. Su, B. L. Davis, B. Kim, M. I. Hussein, Z. C. Leseman, R. H. Olsson-Ill, and I. El-Kady, Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique., AIP Adv. 1 (4), 041403 (2011). 10.1063/1.3675918
    • (2011) AIP Adv. , vol.1 , Issue.4 , pp. 041403
    • Reinke, C.M.1    Su, M.F.2    Davis, B.L.3    Kim, B.4    Hussein, M.I.5    Leseman, Z.C.6    Olsson-Ill, R.H.7    El-Kady, I.8
  • 26
    • 84861740192 scopus 로고    scopus 로고
    • Thermal transport in phononic crystals: The role of zone folding effect
    • 10.1063/1.3699056
    • E. Dechaumphai and R. Chen, Thermal transport in phononic crystals: The role of zone folding effect., J. Appl. Phys. 111 (7), 073508 (2012). 10.1063/1.3699056
    • (2012) J. Appl. Phys. , vol.111 , Issue.7 , pp. 073508
    • Dechaumphai, E.1    Chen, R.2
  • 27
    • 70350397954 scopus 로고    scopus 로고
    • Origin of reduction in phonon thermal conductivity of microporous solids
    • 10.1063/1.3250166
    • P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-kady, and L. M. Phinney, Origin of reduction in phonon thermal conductivity of microporous solids., Appl. Phys. Lett. 95 (16), 161902 (2009). 10.1063/1.3250166
    • (2009) Appl. Phys. Lett. , vol.95 , Issue.16 , pp. 161902
    • Hopkins, P.E.1    Rakich, P.T.2    Olsson, R.H.3    El-Kady, I.F.4    Phinney, L.M.5
  • 28
    • 84877915364 scopus 로고    scopus 로고
    • Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm
    • 10.1103/PhysRevB.87.195301
    • A. Jain, Y.-J. Yu, and A. J. H. McGaughey, Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm., Phys. Rev. B 87 (19), 195301 (2013). 10.1103/PhysRevB.87.195301
    • (2013) Phys. Rev. B , vol.87 , Issue.19 , pp. 195301
    • Jain, A.1    Yu, Y.-J.2    McGaughey, A.J.H.3
  • 29
    • 36549051185 scopus 로고    scopus 로고
    • Lattice thermal conductivity of nanoporous si: Molecular dynamics study
    • 10.1063/1.2817739
    • J.-H. Lee, J. C. Grossman, J. Reed, and G. Galli, Lattice thermal conductivity of nanoporous si: Molecular dynamics study., Appl. Phys. Lett. 91 (22), 223110 (2007). 10.1063/1.2817739
    • (2007) Appl. Phys. Lett. , vol.91 , Issue.22 , pp. 223110
    • Lee, J.-H.1    Grossman, J.C.2    Reed, J.3    Galli, G.4
  • 30
    • 79952904922 scopus 로고    scopus 로고
    • Thermal transport in nanoporous silicon: Interplay between disorder at mesoscopic and atomic scales
    • 10.1021/nn2003184
    • Y. He, D. Donadio, J.-H. Lee, J. C. Grossman, and G. Galli, Thermal transport in nanoporous silicon: Interplay between disorder at mesoscopic and atomic scales., ACS Nano 5 (3), 1839-1844 (2011). 10.1021/nn2003184
    • (2011) ACS Nano , vol.5 , Issue.3 , pp. 1839-1844
    • He, Y.1    Donadio, D.2    Lee, J.-H.3    Grossman, J.C.4    Galli, G.5
  • 31
    • 80053497355 scopus 로고    scopus 로고
    • Scaling laws for thermal conductivity of crystalline nanoporous silicon based on molecular dynamics simulations
    • 10.1063/1.3638054
    • J. Fang and L. Pilon, Scaling laws for thermal conductivity of crystalline nanoporous silicon based on molecular dynamics simulations., J. Appl. Phys. 110 (6), 064305 (2011). 10.1063/1.3638054
    • (2011) J. Appl. Phys. , vol.110 , Issue.6 , pp. 064305
    • Fang, J.1    Pilon, L.2
  • 32
    • 79961229839 scopus 로고    scopus 로고
    • Finite-size effects in the phonon density of states of nanostructured germanium: A comparative study of nanoparticles, nanocrystals, nanoglasses, and bulk phases
    • 10.1103/PhysRevB.83.245416
    • D. Şopu, J. Kotakoski, and K. Albe, Finite-size effects in the phonon density of states of nanostructured germanium: A comparative study of nanoparticles, nanocrystals, nanoglasses, and bulk phases., Phys. Rev. B 83 (24), 245416 (2011). 10.1103/PhysRevB.83.245416
    • (2011) Phys. Rev. B , vol.83 , Issue.24 , pp. 245416
    • Şopu, D.1    Kotakoski, J.2    Albe, K.3
  • 33
    • 33644511446 scopus 로고    scopus 로고
    • Monte carlo transient phonon transport in silicon and germanium at nanoscales
    • 10.1103/PhysRevB.72.064305
    • D. Lacroix, K. Joulain, and D. Lemonnier, Monte carlo transient phonon transport in silicon and germanium at nanoscales., Phys. Rev. B 72 (6), 064305 (2005). 10.1103/PhysRevB.72.064305
    • (2005) Phys. Rev. B , vol.72 , Issue.6 , pp. 064305
    • Lacroix, D.1    Joulain, K.2    Lemonnier, D.3
  • 34
    • 33748492119 scopus 로고    scopus 로고
    • Monte carlo simulation of phonon confinement in silicon nanostructures: Application to the determination of the thermal conductivity of silicon nanowires
    • 10.1063/1.2345598
    • D. Lacroix, K. Joulain, D. Terris, and D. Lemonnier, Monte carlo simulation of phonon confinement in silicon nanostructures: Application to the determination of the thermal conductivity of silicon nanowires., Appl. Phys. Lett. 89 (10), 103104 (2006). 10.1063/1.2345598
    • (2006) Appl. Phys. Lett. , vol.89 , Issue.10 , pp. 103104
    • Lacroix, D.1    Joulain, K.2    Terris, D.3    Lemonnier, D.4
  • 35
    • 1242286933 scopus 로고    scopus 로고
    • Thermal conductivity of periodic microporous silicon films
    • 10.1063/1.1642753
    • D. Song and G. Chen, Thermal conductivity of periodic microporous silicon films., Appl. Phys. Lett. 84 (5), 687 (2004). 10.1063/1.1642753
    • (2004) Appl. Phys. Lett. , vol.84 , Issue.5 , pp. 687
    • Song, D.1    Chen, G.2
  • 37
    • 84872731256 scopus 로고    scopus 로고
    • Thermally induced ostwald ripening of mesoporous ge nanostructures
    • 10.1063/1.4775576
    • S. Tutashkonko, T. Nychyporuk, V. Lysenko, and M. Lemiti, Thermally induced ostwald ripening of mesoporous ge nanostructures., J. Appl. Phys. 113 (2), 023517 (2013). 10.1063/1.4775576
    • (2013) J. Appl. Phys. , vol.113 , Issue.2 , pp. 023517
    • Tutashkonko, S.1    Nychyporuk, T.2    Lysenko, V.3    Lemiti, M.4
  • 40
    • 0000544643 scopus 로고
    • On the influence of obstacles arranged in rectangular order upon the properties of a medium
    • 10.1080/14786449208620364
    • J. W. Lord Rayleigh, On the influence of obstacles arranged in rectangular order upon the properties of a medium., Philos. Mag. 34, 481-502 (1892). 10.1080/14786449208620364
    • (1892) Philos. Mag. , vol.34 , pp. 481-502
    • Lord Rayleigh, J.W.1
  • 41
    • 0023365636 scopus 로고
    • Effective thermal conductivity of composites with interfacial thermal barrier resistance
    • 10.1177/002199838702100602
    • D. P. H. Hasselman and L. F. Johnson, Effective thermal conductivity of composites with interfacial thermal barrier resistance., J. Compos. Mater. 21, 508-515 (1987). 10.1177/002199838702100602
    • (1987) J. Compos. Mater. , vol.21 , pp. 508-515
    • Hasselman, D.P.H.1    Johnson, L.F.2
  • 42
    • 0031143265 scopus 로고    scopus 로고
    • Effective thermal conductivity of particulate composites with interfacial thermal resistance
    • 10.1063/1.365209
    • C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance., J. Appl. Phys. 81 (10), 6692 (1997). 10.1063/1.365209
    • (1997) J. Appl. Phys. , vol.81 , Issue.10 , pp. 6692
    • Nan, C.-W.1    Birringer, R.2    Clarke, D.R.3    Gleiter, H.4
  • 44
    • 77957598342 scopus 로고    scopus 로고
    • Semiclassical model for thermoelectric transport in nanocomposites
    • 10.1103/PhysRevB.82.115308
    • J. Zhou, X. Li, G. Chen, and R. Yang, Semiclassical model for thermoelectric transport in nanocomposites., Phys. Rev. B 82 (11), 115308 (2010). 10.1103/PhysRevB.82.115308
    • (2010) Phys. Rev. B , vol.82 , Issue.11 , pp. 115308
    • Zhou, J.1    Li, X.2    Chen, G.3    Yang, R.4
  • 45
    • 84874655574 scopus 로고    scopus 로고
    • Reduction in lattice thermal conductivity of porous materials due to inhomogeneous porosity
    • 10.1016/j.ijthermalsci.2012.12.008
    • R. H. Tarkhanyan and D. G. Niarchos, Reduction in lattice thermal conductivity of porous materials due to inhomogeneous porosity., Int. J. Therm. Sci. 67, 107-112 (2013). 10.1016/j.ijthermalsci.2012.12.008
    • (2013) Int. J. Therm. Sci. , vol.67 , pp. 107-112
    • Tarkhanyan, R.H.1    Niarchos, D.G.2
  • 46
    • 84874035979 scopus 로고    scopus 로고
    • Nanoscale heat transfer-From computation to experiment
    • 10.1039/c2cp43771f
    • T. Luo and G. Chen, Nanoscale heat transfer-From computation to experiment., Phys. Chem. Chem. Phys. 15 (10), 3389 (2013). 10.1039/c2cp43771f
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , Issue.10 , pp. 3389
    • Luo, T.1    Chen, G.2
  • 47
    • 0035541237 scopus 로고    scopus 로고
    • Calmped nanowire thermal conductivity based on the phonon transport equation
    • 10.1080/108939501753222878
    • S. Volz, D. Lemonnier, and J.-B. Saulnier, Calmped nanowire thermal conductivity based on the phonon transport equation., Microscale Thermophys. Eng. 5 (3), 191-207 (2001). 10.1080/108939501753222878
    • (2001) Microscale Thermophys. Eng. , vol.5 , Issue.3 , pp. 191-207
    • Volz, S.1    Lemonnier, D.2    Saulnier, J.-B.3
  • 48
    • 0035422243 scopus 로고    scopus 로고
    • Monte Carlo study of phonon transport in solid thin films including dispersion and polarization
    • 10.1115/1.1377018
    • S. Mazumder and A. Majumdar, Monte Carlo study of phonon transport in solid thin films including dispersion and polarization., J. Heat Transfer 123 (4), 749 (2001). 10.1115/1.1377018
    • (2001) J. Heat Transfer , vol.123 , Issue.4 , pp. 749
    • Mazumder, S.1    Majumdar, A.2
  • 49
    • 79952281079 scopus 로고    scopus 로고
    • A monte carlo simulation for phonon transport within silicon structures at nanoscales with heat generation
    • 10.1016/j.ijheatmasstransfer.2010.10.039
    • B. T. Wong, M. Francoeur, and P. Mengüç, A monte carlo simulation for phonon transport within silicon structures at nanoscales with heat generation., Int. J. Heat Mass Transfer 54 (9-10), 1825-1838 (2011). 10.1016/j.ijheatmasstransfer.2010.10.039
    • (2011) Int. J. Heat Mass Transfer , vol.54 , Issue.910 , pp. 1825-1838
    • Wong, B.T.1    Francoeur, M.2    Mengüç, P.3
  • 50
    • 82755177358 scopus 로고    scopus 로고
    • Efficient simulation of multidimensional phonon transport using energy-based variance-reduced monte carlo formulations
    • 10.1103/PhysRevB.84.205331
    • J. -P. M. Péraud and N. G. Hadjiconstantinou, Efficient simulation of multidimensional phonon transport using energy-based variance-reduced monte carlo formulations., Phys. Rev. B 84 (20), 205331 (2011). 10.1103/PhysRevB.84. 205331
    • (2011) Phys. Rev. B , vol.84 , Issue.20 , pp. 205331
    • Péraud, J.-P.M.1    Hadjiconstantinou, N.G.2
  • 51
    • 56449095177 scopus 로고    scopus 로고
    • Thin film phonon heat conduction by the dispersion lattice Boltzmann method
    • 10.1115/1.2944249
    • R. A. Escobar and C. H. Amon, Thin film phonon heat conduction by the dispersion lattice Boltzmann method., J. Heat Transfer 130 (9), 092402 (2008). 10.1115/1.2944249
    • (2008) J. Heat Transfer , vol.130 , Issue.9 , pp. 092402
    • Escobar, R.A.1    Amon, C.H.2
  • 53
    • 36149027857 scopus 로고
    • Analysis of lattice thermal conductivity
    • 10.1103/PhysRev.132.2461
    • M. G. Holland, Analysis of lattice thermal conductivity., Phys. Rev. 132 (6), 2461 (1963). 10.1103/PhysRev.132.2461
    • (1963) Phys. Rev. , vol.132 , Issue.6 , pp. 2461
    • Holland, M.G.1
  • 54
    • 4444351507 scopus 로고    scopus 로고
    • Analytic band monte carlo model for electron transport in si including acoustic and optical phonon dispersion
    • 10.1063/1.1788838
    • E. Pop, R. W. Dutton, and K. E. Goodson, Analytic band monte carlo model for electron transport in si including acoustic and optical phonon dispersion., J. Appl. Phys. 96 (9), 4998 (2004). 10.1063/1.1788838
    • (2004) J. Appl. Phys. , vol.96 , Issue.9 , pp. 4998
    • Pop, E.1    Dutton, R.W.2    Goodson, K.E.3
  • 55
    • 60349130346 scopus 로고    scopus 로고
    • Phonon transport in silicon, influence of the dispersion properties choice on the description of the anharmonic resistive mechanisms
    • 10.1140/epjb/e2008-00464-6
    • D. Lacroix, I. Traore, S. Fumeron, and G. Jeandel, Phonon transport in silicon, influence of the dispersion properties choice on the description of the anharmonic resistive mechanisms., Eur. Phys. J. B 67 (1), 15-25 (2009). 10.1140/epjb/e2008-00464-6
    • (2009) Eur. Phys. J. B , vol.67 , Issue.1 , pp. 15-25
    • Lacroix, D.1    Traore, I.2    Fumeron, S.3    Jeandel, G.4
  • 56
    • 0142185143 scopus 로고    scopus 로고
    • Dispersive effects and correction term in two-mode phonon conduction model for ge
    • 10.1016/S0022-3697(03)00274-9
    • B. K. Singh, M. K. Roy, V. J. Menon, and K. C. Sood, Dispersive effects and correction term in two-mode phonon conduction model for ge., J. Phys. Chem. Solids 64 (12), 2369-2377 (2003). 10.1016/S0022-3697(03)00274-9
    • (2003) J. Phys. Chem. Solids , vol.64 , Issue.12 , pp. 2369-2377
    • Singh, B.K.1    Roy, M.K.2    Menon, V.J.3    Sood, K.C.4
  • 57
    • 80051596399 scopus 로고    scopus 로고
    • On the importance of optical phonons to thermal conductivity in nanostructures
    • 10.1063/1.3615709
    • Z. Tian, K. Esfarjani, J. Shiomi, A. S. Henry, and G. Chen, On the importance of optical phonons to thermal conductivity in nanostructures., Appl. Phys. Lett. 99 (5), 053122 (2011). 10.1063/1.3615709
    • (2011) Appl. Phys. Lett. , vol.99 , Issue.5 , pp. 053122
    • Tian, Z.1    Esfarjani, K.2    Shiomi, J.3    Henry, A.S.4    Chen, G.5
  • 58
    • 30444434408 scopus 로고    scopus 로고
    • Monte Carlo simulation of silicon nanowire thermal conductivity
    • 10.1115/1.2035114
    • Y. Chen, D. Li, J. R. Lukes, and A. Majumdar, Monte Carlo simulation of silicon nanowire thermal conductivity., J. Heat Transfer 127 (10), 1129 (2005). 10.1115/1.2035114
    • (2005) J. Heat Transfer , vol.127 , Issue.10 , pp. 1129
    • Chen, Y.1    Li, D.2    Lukes, J.R.3    Majumdar, A.4
  • 59
    • 77955423598 scopus 로고    scopus 로고
    • Thermal conductivity modeling of micro- and nanoporous silicon
    • 10.1016/j.ijthermalsci.2010.04.003
    • L.-C. Liu and M.-J. Huang, Thermal conductivity modeling of micro- and nanoporous silicon., Int. J. Therm. Sci. 49 (9), 1547-1554 (2010). 10.1016/j.ijthermalsci.2010.04.003
    • (2010) Int. J. Therm. Sci. , vol.49 , Issue.9 , pp. 1547-1554
    • Liu, L.-C.1    Huang, M.-J.2
  • 60
    • 84873203264 scopus 로고    scopus 로고
    • Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures
    • 10.1103/PhysRevB.87.035437
    • F. Yang and C. Dames, Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures., Phys. Rev. B 87 (3), 035437 (2013). 10.1103/PhysRevB.87.035437
    • (2013) Phys. Rev. B , vol.87 , Issue.3 , pp. 035437
    • Yang, F.1    Dames, C.2
  • 61
    • 84892424300 scopus 로고    scopus 로고
    • See supplementary material at E-JAPIAU-115-052403 for nanoporous Ge elaboration.
    • See supplementary material at http://dx.doi.org/10.1063/1.4861410 E-JAPIAU-115-052403 for nanoporous Ge elaboration.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.