-
1
-
-
0141775174
-
Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers
-
10.1063/1.103561
-
L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers., Appl. Phys. Lett. 57 (10), 1046 (1990). 10.1063/1.103561
-
(1990)
Appl. Phys. Lett.
, vol.57
, Issue.10
, pp. 1046
-
-
Canham, L.T.1
-
2
-
-
0001753504
-
The structural and luminescence properties of porous silicon
-
10.1063/1.366536
-
A. G. Cullis, L. T. Canham, and P. D. J. Calcott, The structural and luminescence properties of porous silicon., J. Appl. Phys. 82 (3), 909 (1997). 10.1063/1.366536
-
(1997)
J. Appl. Phys.
, vol.82
, Issue.3
, pp. 909
-
-
Cullis, A.G.1
Canham, L.T.2
Calcott, P.D.J.3
-
3
-
-
77956837871
-
Porous Silicon-A versatile host material
-
10.3390/ma3020943
-
P. Granitzer and K. Rumpf, Porous Silicon-A versatile host material., Materials 3 (2), 943-998 (2010). 10.3390/ma3020943
-
(2010)
Materials
, vol.3
, Issue.2
, pp. 943-998
-
-
Granitzer, P.1
Rumpf, K.2
-
4
-
-
31144474014
-
High surface area silicon materials: Fundamentals and new technology
-
10.1098/rsta.2005.1681
-
J. M. Buriak, High surface area silicon materials: Fundamentals and new technology., Philos. Trans. R. Soc., A 364 (1838), 217-225 (2006). 10.1098/rsta.2005.1681
-
(2006)
Philos. Trans. R. Soc., A
, vol.364
, Issue.1838
, pp. 217-225
-
-
Buriak, J.M.1
-
5
-
-
31144465195
-
Why engineer porous materials?
-
10.1098/rsta.2005.1686
-
A. Kelly, Why engineer porous materials?, Phil. Trans. R. Soc., A 364 (1838), 5-14 (2006). 10.1098/rsta.2005.1686
-
(2006)
Phil. Trans. R. Soc., A
, vol.364
, Issue.1838
, pp. 5-14
-
-
Kelly, A.1
-
6
-
-
0033687514
-
Chemical and biological applications of porous silicon technology
-
10.1002/1521-4095(200006)12:12<859::AID-ADMA859>3.0.CO;2-0
-
M. P. Stewart and J. M. Buriak, Chemical and biological applications of porous silicon technology., Adv. Mater. 12 (12), 859-869 (2000). 10.1002/1521-4095(200006)12:12<859::AID-ADMA859>3.0.CO;2-0
-
(2000)
Adv. Mater.
, vol.12
, Issue.12
, pp. 859-869
-
-
Stewart, M.P.1
Buriak, J.M.2
-
7
-
-
0037439322
-
Nanoscale thermal transport
-
10.1063/1.1524305
-
D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, Nanoscale thermal transport., J. Appl. Phys. 93 (2), 793 (2003). 10.1063/1.1524305
-
(2003)
J. Appl. Phys.
, vol.93
, Issue.2
, pp. 793
-
-
Cahill, D.G.1
Ford, W.K.2
Goodson, K.E.3
Mahan, G.D.4
Majumdar, A.5
Maris, H.J.6
Merlin, R.7
Phillpot, S.R.8
-
8
-
-
0031069132
-
Evaluation of thermal conductivity of porous silicon layers by a photoacoustic method
-
10.1007/s003390050457
-
G. Benedetto, L. Boarino, and R. Spagnolo, Evaluation of thermal conductivity of porous silicon layers by a photoacoustic method., Appl. Phys. A: Mater. Sci. Process. 64 (2), 155-159 (1997). 10.1007/s003390050457
-
(1997)
Appl. Phys. A: Mater. Sci. Process.
, vol.64
, Issue.2
, pp. 155-159
-
-
Benedetto, G.1
Boarino, L.2
Spagnolo, R.3
-
9
-
-
0031558607
-
Temperature-dependent thermal conductivity of porous silicon
-
10.1088/0022-3727/30/21/001
-
G. Gesele, J. Linsmeier, V. Drach, J. Fricke, and R. Arens-Fischer, Temperature-dependent thermal conductivity of porous silicon., J. Appl. Phys. D: Appl. Phys. 30 (21), 2911 (1997). 10.1088/0022-3727/30/21/001
-
(1997)
J. Appl. Phys. D: Appl. Phys.
, vol.30
, Issue.21
, pp. 2911
-
-
Gesele, G.1
Linsmeier, J.2
Drach, V.3
Fricke, J.4
Arens-Fischer, R.5
-
10
-
-
85019836348
-
Optical properties of nanostructured silicon
-
(Elsevier), Vol. 1.
-
Y. Chao, Optical properties of nanostructured silicon., in Comprehensive Nanoscience and Technology (Elsevier, 2011), Vol. 1.
-
(2011)
Comprehensive Nanoscience and Technology
-
-
Chao, Y.1
-
11
-
-
63749118906
-
Microfabricated phononic crystal devices and applications
-
10.1088/0957-0233/20/1/012002
-
R. H. Olsson III and I. El-Kady, Microfabricated phononic crystal devices and applications., Meas. Sci. Technol. 20 (1), 012002 (2009). 10.1088/0957-0233/20/1/012002
-
(2009)
Meas. Sci. Technol.
, vol.20
, Issue.1
, pp. 012002
-
-
Olsson III, R.H.1
El-Kady, I.2
-
12
-
-
79951522226
-
Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning
-
10.1021/nl102918q
-
P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning., Nano Lett. 11 (1), 107-112 (2011). 10.1021/nl102918q
-
(2011)
Nano Lett.
, vol.11
, Issue.1
, pp. 107-112
-
-
Hopkins, P.E.1
Reinke, C.M.2
Su, M.F.3
Olsson, R.H.4
Shaner, E.A.5
Leseman, Z.C.6
Serrano, J.R.7
Phinney, L.M.8
El-Kady, I.9
-
13
-
-
77952793372
-
Comparison of optical absorption in si nanowire and nanoporous si structures for photovoltaic applications
-
10.1063/1.3427407
-
Z. Xiong, F. Zhao, J. Yang, and X. Hu, Comparison of optical absorption in si nanowire and nanoporous si structures for photovoltaic applications., Appl. Phys. Lett. 96 (18), 181903 (2010). 10.1063/1.3427407
-
(2010)
Appl. Phys. Lett.
, vol.96
, Issue.18
, pp. 181903
-
-
Xiong, Z.1
Zhao, F.2
Yang, J.3
Hu, X.4
-
14
-
-
84872122697
-
Narrow low-frequency spectrum and heat management by thermocrystals
-
10.1103/PhysRevLett.110.025902
-
M. Maldovan, Narrow low-frequency spectrum and heat management by thermocrystals., Phys. Rev. Lett. 110 (2), 025902 (2013). 10.1103/PhysRevLett. 110.025902
-
(2013)
Phys. Rev. Lett.
, vol.110
, Issue.2
, pp. 025902
-
-
Maldovan, M.1
-
15
-
-
29844450239
-
Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction
-
10.1103/PhysRevB.72.125418
-
R. Yang, G. Chen, and M. Dresselhaus, Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction., Phys. Rev. B 72 (12), 125418 (2005). 10.1103/PhysRevB.72.125418
-
(2005)
Phys. Rev. B
, vol.72
, Issue.12
, pp. 125418
-
-
Yang, R.1
Chen, G.2
Dresselhaus, M.3
-
16
-
-
34548035431
-
Modified effective medium formulation for the thermal conductivity of nanocomposites
-
10.1063/1.2771040
-
A. Minnich and G. Chen, Modified effective medium formulation for the thermal conductivity of nanocomposites., Appl. Phys. Lett. 91 (7), 073105 (2007). 10.1063/1.2771040
-
(2007)
Appl. Phys. Lett.
, vol.91
, Issue.7
, pp. 073105
-
-
Minnich, A.1
Chen, G.2
-
17
-
-
41649094407
-
Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation
-
10.1115/1.2818765
-
M.-S. Jeng, R. Yang, D. Song, and G. Chen, Modeling the thermal conductivity and phonon transport in nanoparticle composites using Monte Carlo simulation., J. Heat Transfer 130 (4), 042410 (2008). 10.1115/1.2818765
-
(2008)
J. Heat Transfer
, vol.130
, Issue.4
, pp. 042410
-
-
Jeng, M.-S.1
Yang, R.2
Song, D.3
Chen, G.4
-
18
-
-
0009642109
-
Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon
-
10.1016/S0017-9310(99)00165-9
-
J. D. Chung and M. Kaviany, Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon., Int. J. Heat Mass Transfer 43 (4), 521-538 (2000). 10.1016/S0017-9310(99)00165-9
-
(2000)
Int. J. Heat Mass Transfer
, vol.43
, Issue.4
, pp. 521-538
-
-
Chung, J.D.1
Kaviany, M.2
-
19
-
-
40849094591
-
Monte Carlo simulation of cross-plane thermal conductivity of nanostructured porous silicon films
-
10.1063/1.2841697
-
J. Randrianalisoa and D. Baillis, Monte Carlo simulation of cross-plane thermal conductivity of nanostructured porous silicon films., J. Appl. Phys. 103 (5), 053502 (2008). 10.1063/1.2841697
-
(2008)
J. Appl. Phys.
, vol.103
, Issue.5
, pp. 053502
-
-
Randrianalisoa, J.1
Baillis, D.2
-
20
-
-
33747354364
-
Thermal conductivity of composites of aligned nanoscale and microscale wires and pores
-
10.1063/1.2219162
-
R. Prasher, Thermal conductivity of composites of aligned nanoscale and microscale wires and pores., J. Appl. Phys. 100 (3), 034307 (2006). 10.1063/1.2219162
-
(2006)
J. Appl. Phys.
, vol.100
, Issue.3
, pp. 034307
-
-
Prasher, R.1
-
21
-
-
33749339029
-
Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores
-
10.1063/1.2337786
-
R. Prasher, Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores., J. Appl. Phys. 100 (6), 064302 (2006). 10.1063/1.2337786
-
(2006)
J. Appl. Phys.
, vol.100
, Issue.6
, pp. 064302
-
-
Prasher, R.1
-
22
-
-
72449153398
-
Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores
-
10.1063/1.3266169
-
Q. Hao, G. Chen, and M.-S. Jeng, Frequency-dependent Monte Carlo simulations of phonon transport in two-dimensional porous silicon with aligned pores., J. Appl. Phys. 106 (11), 114321 (2009). 10.1063/1.3266169
-
(2009)
J. Appl. Phys.
, vol.106
, Issue.11
, pp. 114321
-
-
Hao, Q.1
Chen, G.2
Jeng, M.-S.3
-
23
-
-
84860888703
-
Mesoscale modeling of phononic thermal conductivity of porous si: Interplay between porosity, morphology and surface roughness
-
10.1007/s10825-012-0390-2
-
G. Romano, A. Carlo, and J. C. Grossman, Mesoscale modeling of phononic thermal conductivity of porous si: Interplay between porosity, morphology and surface roughness., J. Comput. Electron. 11 (1), 8-13 (2012). 10.1007/s10825-012-0390-2
-
(2012)
J. Comput. Electron.
, vol.11
, Issue.1
, pp. 8-13
-
-
Romano, G.1
Carlo, A.2
Grossman, J.C.3
-
24
-
-
84863535642
-
Thermal conductivity modeling of periodic porous silicon with aligned cylindrical pores
-
10.1063/1.4730962
-
T.-Y. Hsieh, H. Lin, T.-J. Hsieh, and J.-C. Huang, Thermal conductivity modeling of periodic porous silicon with aligned cylindrical pores., J. Appl. Phys. 111 (12), 124329 (2012). 10.1063/1.4730962
-
(2012)
J. Appl. Phys.
, vol.111
, Issue.12
, pp. 124329
-
-
Hsieh, T.-Y.1
Lin, H.2
Hsieh, T.-J.3
Huang, J.-C.4
-
25
-
-
84855301467
-
Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique
-
10.1063/1.3675918
-
C. M. Reinke, M. F. Su, B. L. Davis, B. Kim, M. I. Hussein, Z. C. Leseman, R. H. Olsson-Ill, and I. El-Kady, Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique., AIP Adv. 1 (4), 041403 (2011). 10.1063/1.3675918
-
(2011)
AIP Adv.
, vol.1
, Issue.4
, pp. 041403
-
-
Reinke, C.M.1
Su, M.F.2
Davis, B.L.3
Kim, B.4
Hussein, M.I.5
Leseman, Z.C.6
Olsson-Ill, R.H.7
El-Kady, I.8
-
26
-
-
84861740192
-
Thermal transport in phononic crystals: The role of zone folding effect
-
10.1063/1.3699056
-
E. Dechaumphai and R. Chen, Thermal transport in phononic crystals: The role of zone folding effect., J. Appl. Phys. 111 (7), 073508 (2012). 10.1063/1.3699056
-
(2012)
J. Appl. Phys.
, vol.111
, Issue.7
, pp. 073508
-
-
Dechaumphai, E.1
Chen, R.2
-
27
-
-
70350397954
-
Origin of reduction in phonon thermal conductivity of microporous solids
-
10.1063/1.3250166
-
P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-kady, and L. M. Phinney, Origin of reduction in phonon thermal conductivity of microporous solids., Appl. Phys. Lett. 95 (16), 161902 (2009). 10.1063/1.3250166
-
(2009)
Appl. Phys. Lett.
, vol.95
, Issue.16
, pp. 161902
-
-
Hopkins, P.E.1
Rakich, P.T.2
Olsson, R.H.3
El-Kady, I.F.4
Phinney, L.M.5
-
28
-
-
84877915364
-
Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm
-
10.1103/PhysRevB.87.195301
-
A. Jain, Y.-J. Yu, and A. J. H. McGaughey, Phonon transport in periodic silicon nanoporous films with feature sizes greater than 100 nm., Phys. Rev. B 87 (19), 195301 (2013). 10.1103/PhysRevB.87.195301
-
(2013)
Phys. Rev. B
, vol.87
, Issue.19
, pp. 195301
-
-
Jain, A.1
Yu, Y.-J.2
McGaughey, A.J.H.3
-
29
-
-
36549051185
-
Lattice thermal conductivity of nanoporous si: Molecular dynamics study
-
10.1063/1.2817739
-
J.-H. Lee, J. C. Grossman, J. Reed, and G. Galli, Lattice thermal conductivity of nanoporous si: Molecular dynamics study., Appl. Phys. Lett. 91 (22), 223110 (2007). 10.1063/1.2817739
-
(2007)
Appl. Phys. Lett.
, vol.91
, Issue.22
, pp. 223110
-
-
Lee, J.-H.1
Grossman, J.C.2
Reed, J.3
Galli, G.4
-
30
-
-
79952904922
-
Thermal transport in nanoporous silicon: Interplay between disorder at mesoscopic and atomic scales
-
10.1021/nn2003184
-
Y. He, D. Donadio, J.-H. Lee, J. C. Grossman, and G. Galli, Thermal transport in nanoporous silicon: Interplay between disorder at mesoscopic and atomic scales., ACS Nano 5 (3), 1839-1844 (2011). 10.1021/nn2003184
-
(2011)
ACS Nano
, vol.5
, Issue.3
, pp. 1839-1844
-
-
He, Y.1
Donadio, D.2
Lee, J.-H.3
Grossman, J.C.4
Galli, G.5
-
31
-
-
80053497355
-
Scaling laws for thermal conductivity of crystalline nanoporous silicon based on molecular dynamics simulations
-
10.1063/1.3638054
-
J. Fang and L. Pilon, Scaling laws for thermal conductivity of crystalline nanoporous silicon based on molecular dynamics simulations., J. Appl. Phys. 110 (6), 064305 (2011). 10.1063/1.3638054
-
(2011)
J. Appl. Phys.
, vol.110
, Issue.6
, pp. 064305
-
-
Fang, J.1
Pilon, L.2
-
32
-
-
79961229839
-
Finite-size effects in the phonon density of states of nanostructured germanium: A comparative study of nanoparticles, nanocrystals, nanoglasses, and bulk phases
-
10.1103/PhysRevB.83.245416
-
D. Şopu, J. Kotakoski, and K. Albe, Finite-size effects in the phonon density of states of nanostructured germanium: A comparative study of nanoparticles, nanocrystals, nanoglasses, and bulk phases., Phys. Rev. B 83 (24), 245416 (2011). 10.1103/PhysRevB.83.245416
-
(2011)
Phys. Rev. B
, vol.83
, Issue.24
, pp. 245416
-
-
Şopu, D.1
Kotakoski, J.2
Albe, K.3
-
33
-
-
33644511446
-
Monte carlo transient phonon transport in silicon and germanium at nanoscales
-
10.1103/PhysRevB.72.064305
-
D. Lacroix, K. Joulain, and D. Lemonnier, Monte carlo transient phonon transport in silicon and germanium at nanoscales., Phys. Rev. B 72 (6), 064305 (2005). 10.1103/PhysRevB.72.064305
-
(2005)
Phys. Rev. B
, vol.72
, Issue.6
, pp. 064305
-
-
Lacroix, D.1
Joulain, K.2
Lemonnier, D.3
-
34
-
-
33748492119
-
Monte carlo simulation of phonon confinement in silicon nanostructures: Application to the determination of the thermal conductivity of silicon nanowires
-
10.1063/1.2345598
-
D. Lacroix, K. Joulain, D. Terris, and D. Lemonnier, Monte carlo simulation of phonon confinement in silicon nanostructures: Application to the determination of the thermal conductivity of silicon nanowires., Appl. Phys. Lett. 89 (10), 103104 (2006). 10.1063/1.2345598
-
(2006)
Appl. Phys. Lett.
, vol.89
, Issue.10
, pp. 103104
-
-
Lacroix, D.1
Joulain, K.2
Terris, D.3
Lemonnier, D.4
-
35
-
-
1242286933
-
Thermal conductivity of periodic microporous silicon films
-
10.1063/1.1642753
-
D. Song and G. Chen, Thermal conductivity of periodic microporous silicon films., Appl. Phys. Lett. 84 (5), 687 (2004). 10.1063/1.1642753
-
(2004)
Appl. Phys. Lett.
, vol.84
, Issue.5
, pp. 687
-
-
Song, D.1
Chen, G.2
-
36
-
-
84880856302
-
Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions
-
10.1063/1.4812280
-
P. J. Newby, B. Canut, J.-M. Bluet, S. Gomes, M. Isaiev, R. Burbelo, K. Termentzidis, P. Chantrenne, L. G. Frechette, and V. Lysenko, Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions., J. Appl. Phys. 114 (1), 014903 (2013). 10.1063/1.4812280
-
(2013)
J. Appl. Phys.
, vol.114
, Issue.1
, pp. 014903
-
-
Newby, P.J.1
Canut, B.2
Bluet, J.-M.3
Gomes, S.4
Isaiev, M.5
Burbelo, R.6
Termentzidis, K.7
Chantrenne, P.8
Frechette, L.G.9
Lysenko, V.10
-
37
-
-
84872731256
-
Thermally induced ostwald ripening of mesoporous ge nanostructures
-
10.1063/1.4775576
-
S. Tutashkonko, T. Nychyporuk, V. Lysenko, and M. Lemiti, Thermally induced ostwald ripening of mesoporous ge nanostructures., J. Appl. Phys. 113 (2), 023517 (2013). 10.1063/1.4775576
-
(2013)
J. Appl. Phys.
, vol.113
, Issue.2
, pp. 023517
-
-
Tutashkonko, S.1
Nychyporuk, T.2
Lysenko, V.3
Lemiti, M.4
-
40
-
-
0000544643
-
On the influence of obstacles arranged in rectangular order upon the properties of a medium
-
10.1080/14786449208620364
-
J. W. Lord Rayleigh, On the influence of obstacles arranged in rectangular order upon the properties of a medium., Philos. Mag. 34, 481-502 (1892). 10.1080/14786449208620364
-
(1892)
Philos. Mag.
, vol.34
, pp. 481-502
-
-
Lord Rayleigh, J.W.1
-
41
-
-
0023365636
-
Effective thermal conductivity of composites with interfacial thermal barrier resistance
-
10.1177/002199838702100602
-
D. P. H. Hasselman and L. F. Johnson, Effective thermal conductivity of composites with interfacial thermal barrier resistance., J. Compos. Mater. 21, 508-515 (1987). 10.1177/002199838702100602
-
(1987)
J. Compos. Mater.
, vol.21
, pp. 508-515
-
-
Hasselman, D.P.H.1
Johnson, L.F.2
-
42
-
-
0031143265
-
Effective thermal conductivity of particulate composites with interfacial thermal resistance
-
10.1063/1.365209
-
C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, Effective thermal conductivity of particulate composites with interfacial thermal resistance., J. Appl. Phys. 81 (10), 6692 (1997). 10.1063/1.365209
-
(1997)
J. Appl. Phys.
, vol.81
, Issue.10
, pp. 6692
-
-
Nan, C.-W.1
Birringer, R.2
Clarke, D.R.3
Gleiter, H.4
-
43
-
-
0038497618
-
-
edited by H. S. Nalwa (American Scientific Publisher), Vol. 7.
-
G. Chen, D. Borca-Tascuic, and R. G. Yang, Encyclopedia of Nanoscience and Nanotechnology, edited by, H. S. Nalwa, (American Scientific Publisher, 2004), Vol. 7.
-
(2004)
Encyclopedia of Nanoscience and Nanotechnology
-
-
Chen, G.1
Borca-Tascuic, D.2
Yang, R.G.3
-
44
-
-
77957598342
-
Semiclassical model for thermoelectric transport in nanocomposites
-
10.1103/PhysRevB.82.115308
-
J. Zhou, X. Li, G. Chen, and R. Yang, Semiclassical model for thermoelectric transport in nanocomposites., Phys. Rev. B 82 (11), 115308 (2010). 10.1103/PhysRevB.82.115308
-
(2010)
Phys. Rev. B
, vol.82
, Issue.11
, pp. 115308
-
-
Zhou, J.1
Li, X.2
Chen, G.3
Yang, R.4
-
45
-
-
84874655574
-
Reduction in lattice thermal conductivity of porous materials due to inhomogeneous porosity
-
10.1016/j.ijthermalsci.2012.12.008
-
R. H. Tarkhanyan and D. G. Niarchos, Reduction in lattice thermal conductivity of porous materials due to inhomogeneous porosity., Int. J. Therm. Sci. 67, 107-112 (2013). 10.1016/j.ijthermalsci.2012.12.008
-
(2013)
Int. J. Therm. Sci.
, vol.67
, pp. 107-112
-
-
Tarkhanyan, R.H.1
Niarchos, D.G.2
-
46
-
-
84874035979
-
Nanoscale heat transfer-From computation to experiment
-
10.1039/c2cp43771f
-
T. Luo and G. Chen, Nanoscale heat transfer-From computation to experiment., Phys. Chem. Chem. Phys. 15 (10), 3389 (2013). 10.1039/c2cp43771f
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, Issue.10
, pp. 3389
-
-
Luo, T.1
Chen, G.2
-
47
-
-
0035541237
-
Calmped nanowire thermal conductivity based on the phonon transport equation
-
10.1080/108939501753222878
-
S. Volz, D. Lemonnier, and J.-B. Saulnier, Calmped nanowire thermal conductivity based on the phonon transport equation., Microscale Thermophys. Eng. 5 (3), 191-207 (2001). 10.1080/108939501753222878
-
(2001)
Microscale Thermophys. Eng.
, vol.5
, Issue.3
, pp. 191-207
-
-
Volz, S.1
Lemonnier, D.2
Saulnier, J.-B.3
-
48
-
-
0035422243
-
Monte Carlo study of phonon transport in solid thin films including dispersion and polarization
-
10.1115/1.1377018
-
S. Mazumder and A. Majumdar, Monte Carlo study of phonon transport in solid thin films including dispersion and polarization., J. Heat Transfer 123 (4), 749 (2001). 10.1115/1.1377018
-
(2001)
J. Heat Transfer
, vol.123
, Issue.4
, pp. 749
-
-
Mazumder, S.1
Majumdar, A.2
-
49
-
-
79952281079
-
A monte carlo simulation for phonon transport within silicon structures at nanoscales with heat generation
-
10.1016/j.ijheatmasstransfer.2010.10.039
-
B. T. Wong, M. Francoeur, and P. Mengüç, A monte carlo simulation for phonon transport within silicon structures at nanoscales with heat generation., Int. J. Heat Mass Transfer 54 (9-10), 1825-1838 (2011). 10.1016/j.ijheatmasstransfer.2010.10.039
-
(2011)
Int. J. Heat Mass Transfer
, vol.54
, Issue.910
, pp. 1825-1838
-
-
Wong, B.T.1
Francoeur, M.2
Mengüç, P.3
-
50
-
-
82755177358
-
Efficient simulation of multidimensional phonon transport using energy-based variance-reduced monte carlo formulations
-
10.1103/PhysRevB.84.205331
-
J. -P. M. Péraud and N. G. Hadjiconstantinou, Efficient simulation of multidimensional phonon transport using energy-based variance-reduced monte carlo formulations., Phys. Rev. B 84 (20), 205331 (2011). 10.1103/PhysRevB.84. 205331
-
(2011)
Phys. Rev. B
, vol.84
, Issue.20
, pp. 205331
-
-
Péraud, J.-P.M.1
Hadjiconstantinou, N.G.2
-
51
-
-
56449095177
-
Thin film phonon heat conduction by the dispersion lattice Boltzmann method
-
10.1115/1.2944249
-
R. A. Escobar and C. H. Amon, Thin film phonon heat conduction by the dispersion lattice Boltzmann method., J. Heat Transfer 130 (9), 092402 (2008). 10.1115/1.2944249
-
(2008)
J. Heat Transfer
, vol.130
, Issue.9
, pp. 092402
-
-
Escobar, R.A.1
Amon, C.H.2
-
53
-
-
36149027857
-
Analysis of lattice thermal conductivity
-
10.1103/PhysRev.132.2461
-
M. G. Holland, Analysis of lattice thermal conductivity., Phys. Rev. 132 (6), 2461 (1963). 10.1103/PhysRev.132.2461
-
(1963)
Phys. Rev.
, vol.132
, Issue.6
, pp. 2461
-
-
Holland, M.G.1
-
54
-
-
4444351507
-
Analytic band monte carlo model for electron transport in si including acoustic and optical phonon dispersion
-
10.1063/1.1788838
-
E. Pop, R. W. Dutton, and K. E. Goodson, Analytic band monte carlo model for electron transport in si including acoustic and optical phonon dispersion., J. Appl. Phys. 96 (9), 4998 (2004). 10.1063/1.1788838
-
(2004)
J. Appl. Phys.
, vol.96
, Issue.9
, pp. 4998
-
-
Pop, E.1
Dutton, R.W.2
Goodson, K.E.3
-
55
-
-
60349130346
-
Phonon transport in silicon, influence of the dispersion properties choice on the description of the anharmonic resistive mechanisms
-
10.1140/epjb/e2008-00464-6
-
D. Lacroix, I. Traore, S. Fumeron, and G. Jeandel, Phonon transport in silicon, influence of the dispersion properties choice on the description of the anharmonic resistive mechanisms., Eur. Phys. J. B 67 (1), 15-25 (2009). 10.1140/epjb/e2008-00464-6
-
(2009)
Eur. Phys. J. B
, vol.67
, Issue.1
, pp. 15-25
-
-
Lacroix, D.1
Traore, I.2
Fumeron, S.3
Jeandel, G.4
-
56
-
-
0142185143
-
Dispersive effects and correction term in two-mode phonon conduction model for ge
-
10.1016/S0022-3697(03)00274-9
-
B. K. Singh, M. K. Roy, V. J. Menon, and K. C. Sood, Dispersive effects and correction term in two-mode phonon conduction model for ge., J. Phys. Chem. Solids 64 (12), 2369-2377 (2003). 10.1016/S0022-3697(03)00274-9
-
(2003)
J. Phys. Chem. Solids
, vol.64
, Issue.12
, pp. 2369-2377
-
-
Singh, B.K.1
Roy, M.K.2
Menon, V.J.3
Sood, K.C.4
-
57
-
-
80051596399
-
On the importance of optical phonons to thermal conductivity in nanostructures
-
10.1063/1.3615709
-
Z. Tian, K. Esfarjani, J. Shiomi, A. S. Henry, and G. Chen, On the importance of optical phonons to thermal conductivity in nanostructures., Appl. Phys. Lett. 99 (5), 053122 (2011). 10.1063/1.3615709
-
(2011)
Appl. Phys. Lett.
, vol.99
, Issue.5
, pp. 053122
-
-
Tian, Z.1
Esfarjani, K.2
Shiomi, J.3
Henry, A.S.4
Chen, G.5
-
58
-
-
30444434408
-
Monte Carlo simulation of silicon nanowire thermal conductivity
-
10.1115/1.2035114
-
Y. Chen, D. Li, J. R. Lukes, and A. Majumdar, Monte Carlo simulation of silicon nanowire thermal conductivity., J. Heat Transfer 127 (10), 1129 (2005). 10.1115/1.2035114
-
(2005)
J. Heat Transfer
, vol.127
, Issue.10
, pp. 1129
-
-
Chen, Y.1
Li, D.2
Lukes, J.R.3
Majumdar, A.4
-
59
-
-
77955423598
-
Thermal conductivity modeling of micro- and nanoporous silicon
-
10.1016/j.ijthermalsci.2010.04.003
-
L.-C. Liu and M.-J. Huang, Thermal conductivity modeling of micro- and nanoporous silicon., Int. J. Therm. Sci. 49 (9), 1547-1554 (2010). 10.1016/j.ijthermalsci.2010.04.003
-
(2010)
Int. J. Therm. Sci.
, vol.49
, Issue.9
, pp. 1547-1554
-
-
Liu, L.-C.1
Huang, M.-J.2
-
60
-
-
84873203264
-
Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures
-
10.1103/PhysRevB.87.035437
-
F. Yang and C. Dames, Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures., Phys. Rev. B 87 (3), 035437 (2013). 10.1103/PhysRevB.87.035437
-
(2013)
Phys. Rev. B
, vol.87
, Issue.3
, pp. 035437
-
-
Yang, F.1
Dames, C.2
-
61
-
-
84892424300
-
-
See supplementary material at E-JAPIAU-115-052403 for nanoporous Ge elaboration.
-
See supplementary material at http://dx.doi.org/10.1063/1.4861410 E-JAPIAU-115-052403 for nanoporous Ge elaboration.
-
-
-
|