메뉴 건너뛰기




Volumn 20, Issue 2, 2014, Pages 528-543

Modeling and optimization of cross-flow ultrafiltration using hybrid neural network-genetic algorithm approach

Author keywords

Artificial neural network; Genetic algorithm; Industrial oily wastewater; Sensitivity analysis; Ultrafiltration

Indexed keywords

CORRELATION COEFFICIENT; CROSS-FLOW ULTRAFILTRATION; HYBRID NEURAL NETWORK-GENETIC ALGORITHM; MODELING AND OPTIMIZATION; OILY WASTEWATER; OPTIMIZATION ALGORITHMS; POLYACRYLONITRILE (PAN); PROCESS INPUT VARIABLES;

EID: 84891846636     PISSN: 1226086X     EISSN: 22345957     Source Type: Journal    
DOI: 10.1016/j.jiec.2013.05.012     Document Type: Article
Times cited : (60)

References (92)
  • 42
    • 84872692729 scopus 로고    scopus 로고
    • Standard Methods for the Examination of Water and Wastewater
    • 20th ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA
    • Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA, 2001.
    • (2001)
  • 80
    • 0003818389 scopus 로고
    • CBS College Publishing, New York
    • Hays W.L. Statistics 1981, CBS College Publishing, New York. 3rd ed.
    • (1981) Statistics
    • Hays, W.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.