메뉴 건너뛰기




Volumn 41, Issue 1-3, 2012, Pages 95-104

Dynamic modeling of flux and total hydraulic resistance in nanofiltration treatment of regeneration waste brine using artificial neural networks

Author keywords

Hydraulic resistances; Membrane; Simulation; Wastewater treatment

Indexed keywords


EID: 84864110040     PISSN: 19443994     EISSN: 19443986     Source Type: Journal    
DOI: 10.1080/19443994.2012.664683     Document Type: Article
Times cited : (42)

References (26)
  • 1
    • 0036154806 scopus 로고    scopus 로고
    • Potentials of separation membranes in the sugar industry
    • A. Hinkova, Z. Bubni ́k, P. Kadlec, J. Pridal, Potentials of separation membranes in the sugar industry, Sep. Purif. Technol. 26 (2002) 101-110.
    • (2002) Sep. Purif. Technol , vol.26 , pp. 101-110
    • Hinkova, A.1    BubníK, Z.2    Kadlec, P.3    Pridal, J.4
  • 2
    • 0031260797 scopus 로고    scopus 로고
    • Treatment of sugar decolorizing regeneration waste using nanofiltration
    • S. Cartier, M.A. Theoleyre, M. Decloux, Treatment of sugar decolorizing regeneration waste using nanofiltration, Desalination 113 (1997) 7-17.
    • (1997) Desalination , vol.113 , pp. 7-17
    • Cartier, S.1    Theoleyre, M.A.2    Decloux, M.3
  • 3
    • 0028989579 scopus 로고
    • Modelling of nanofiltration applied to the recovery of salt from waste brine at a sugar decolorisation plant
    • S. Wadley, C.J. Brouckaert, L.A.D. Baddock, C.A. Buckley, Modelling of nanofiltration applied to the recovery of salt from waste brine at a sugar decolorisation plant, J. Membr. Sci. 102 (1995) 163-175.
    • (1995) J. Membr. Sci , vol.102 , pp. 163-175
    • Wadley, S.1    Brouckaert, C.J.2    Baddock, L.A.D.3    Buckley, C.A.4
  • 4
    • 0027337142 scopus 로고
    • Composite reverse osmosis and nanofiltration membranes
    • R.J. Petersen, Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci. 83 (1993) 81-150.
    • (1993) J. Membr. Sci , vol.83 , pp. 81-150
    • Petersen, R.J.1
  • 5
    • 34247563914 scopus 로고    scopus 로고
    • Neural networks simulation of the filtration of sodium chloride and magnesium chloride solutions using nanofiltration membranes
    • N.A. Darwish, N. Hilal, H. Al-Zoubi, A.W. Mohammad, Neural networks simulation of the filtration of sodium chloride and magnesium chloride solutions using nanofiltration membranes, I. Chem. E 85 (2007) 417-430.
    • (2007) I. Chem. E , vol.85 , pp. 417-430
    • Darwish, N.A.1    Hilal, N.2    Al-Zoubi, H.3    Mohammad, A.W.4
  • 6
    • 77954183943 scopus 로고    scopus 로고
    • Modeling the permeate transient response to perturbations from steady-state in a nanofiltration process
    • S.J. Duranceau, Modeling the permeate transient response to perturbations from steady-state in a nanofiltration process, Desalin. Water Treat. 1 (2009) 7-16.
    • (2009) Desalin. Water Treat , vol.1 , pp. 7-16
    • Duranceau, S.J.1
  • 7
    • 77954201792 scopus 로고    scopus 로고
    • Limitations of resistance-in-series model for fouling analysis in membrane bioreactors: A cautionary note
    • I.S. Chang, R. Field, Z. Cui, Limitations of resistance-in-series model for fouling analysis in membrane bioreactors: A cautionary note, Desalin. Water Treat. 8 (2009) 31-36.
    • (2009) Desalin. Water Treat , vol.8 , pp. 31-36
    • Chang, I.S.1    Field, R.2    Cui, Z.3
  • 8
    • 60549093196 scopus 로고    scopus 로고
    • Prediction of permeate flux during electric field enhanced cross-flow ultrafiltration- a neural network approach
    • B. Sarkar, A. Sengupta, S. De, S. DasGupta, Prediction of permeate flux during electric field enhanced cross-flow ultrafiltration- a neural network approach, Sep. Purif. Technol. 65 (2009) 260-268.
    • (2009) Sep. Purif. Technol , vol.65 , pp. 260-268
    • Sarkar, B.1    Sengupta, A.2    De, S.3    Dasgupta, S.4
  • 9
    • 0028987364 scopus 로고
    • Dynamic modeling of crossflow microfiltration using neural networks
    • M. Dornier, M. Decloux, G. Trystram, A. Lebert, Dynamic modeling of crossflow microfiltration using neural networks, J. Membr. Sci. 98 (1995) 263-273.
    • (1995) J. Membr. Sci , vol.98 , pp. 263-273
    • Dornier, M.1    Decloux, M.2    Trystram, G.3    Lebert, A.4
  • 10
    • 0034672848 scopus 로고    scopus 로고
    • Neural network model for ultrafiltration and backwashing
    • C. Teodosiu, D. Pastravanu, M. Macoveanu, Neural network model for ultrafiltration and backwashing, Water Res. 34 (2000) 4371-4380.
    • (2000) Water Res , vol.34 , pp. 4371-4380
    • Teodosiu, C.1    Pastravanu, D.2    Macoveanu, M.3
  • 12
    • 0043169729 scopus 로고    scopus 로고
    • Dynamic modeling of milk ultrafiltration by artificial neural network
    • S.M.A. Razavi, S.A. Mortazavi, S.M. Mousavi, Dynamic modeling of milk ultrafiltration by artificial neural network, J. Membr. Sci. 220 (2003) 47-58.
    • (2003) J. Membr. Sci , vol.220 , pp. 47-58
    • Razavi, S.M.A.1    Mortazavi, S.A.2    Mousavi, S.M.3
  • 13
    • 27744448208 scopus 로고    scopus 로고
    • Modeling of an RO water desalination unit using neural networks
    • A. Abbas, N. Al-Bastaki, Modeling of an RO water desalination unit using neural networks, Chem. Eng. J. 114 (2005) 139-143.
    • (2005) Chem. Eng. J , vol.114 , pp. 139-143
    • Abbas, A.1    Al-Bastaki, N.2
  • 14
    • 0034631748 scopus 로고    scopus 로고
    • Predicting salt rejections at nanofiltration membranes using artificial neural networks
    • W.R. Bowen, M.G. Jones, J.S.T. Welfoo, H.N. Yousef, Predicting salt rejections at nanofiltration membranes using artificial neural networks, Desalination 129 (2000) 147-162.
    • (2000) Desalination , vol.129 , pp. 147-162
    • Bowen, W.R.1    Jones, M.G.2    Welfoo, J.S.T.3    Yousef, H.N.4
  • 15
    • 26244449045 scopus 로고    scopus 로고
    • A pore diffusion transport model for forecasting the performance of membrane processes
    • S.C. Tu, V. Ravindran, M. Pirbazari, A pore diffusion transport model for forecasting the performance of membrane processes, J. Membr. Sci. 265 (2005) 9-50.
    • (2005) J. Membr. Sci , vol.265 , pp. 9-50
    • Tu, S.C.1    Ravindran, V.2    Pirbazari, M.3
  • 16
    • 78649929377 scopus 로고    scopus 로고
    • Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model
    • Y. Kaya, H. Barlasa, S. Arayici, Evaluation of fouling mechanisms in the nanofiltration of solutions with high anionic and nonionic surfactant contents using a resistance-in-series model, J. Membr. Sci. 367(1-2) (2011) 45-54.
    • (2011) J. Membr. Sci , vol.367 , Issue.1-2 , pp. 45-54
    • Kaya, Y.1    Barlasa, H.2    Arayici, S.3
  • 18
    • 0742305956 scopus 로고    scopus 로고
    • Application of neural networks for crossflow milk ultrafiltration simulation
    • S.M.A. Razavi, S.A. Mortazavi, S.M. Mousavi, Application of neural networks for crossflow milk ultrafiltration simulation, Int. Dairy J. 14 (2004) 69-80.
    • (2004) Int. Dairy J , vol.14 , pp. 69-80
    • Razavi, S.M.A.1    Mortazavi, S.A.2    Mousavi, S.M.3
  • 19
    • 47049092954 scopus 로고    scopus 로고
    • Neural network modeling for separation of bentonite in tubular ceramic membranes
    • N. Hilal, O.O. Ogunbiyi, M. Al-Abri, Neural network modeling for separation of bentonite in tubular ceramic membranes, Desalination 228 (2008) 175-182.
    • (2008) Desalination , vol.228 , pp. 175-182
    • Hilal, N.1    Ogunbiyi, O.O.2    Al-Abri, M.3
  • 20
    • 77349122829 scopus 로고    scopus 로고
    • Prediction of microfiltration membrane fouling using artificial neural network models
    • Q. Liu, S. Kim, S. Lee, Prediction of microfiltration membrane fouling using artificial neural network models, Sep. Purif. Technol. 70 (2009) 96-102.
    • (2009) Sep. Purif. Technol , vol.70 , pp. 96-102
    • Liu, Q.1    Kim, S.2    Lee, S.3
  • 21
    • 80053570160 scopus 로고    scopus 로고
    • Application of image analysis and artificial neural networkto predict mass transfer kinetics and color changesof osmotically dehydrated kiwifruit
    • 10.1007/s11947-009-0222-y
    • M. Fathi, M. Mohebbi, S.M.A. Razavi, Application of image analysis and artificial neural networkto predict mass transfer kinetics and color changesof osmotically dehydrated kiwifruit, Food Bioprocess Technol. (2009), doi: 10.1007/s11947-009-0222-y.
    • (2009) Food Bioprocess Technol
    • Fathi, M.1    Mohebbi, M.2    Razavi, S.M.A.3
  • 23
    • 20444445001 scopus 로고    scopus 로고
    • Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions
    • S. Chellam, Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions, J. Membr. Sci. 258 (2005) 35-42.
    • (2005) J. Membr. Sci , vol.258 , pp. 35-42
    • Chellam, S.1
  • 24
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • M.T. Hagan, M. Menhaj, Training feed forward networks with the Marquardt algorithm, IEEE. Trans. Neural Network 5 (1994) 989-993.
    • (1994) IEEE. Trans Neural Network , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 25
    • 60449108073 scopus 로고    scopus 로고
    • On the influence of surface roughness on real area of contact in normal, dry, friction free, rough contact by using a neural network
    • M.P. Rapetto, A. Almqvist, R. Larsson, P.M. Lugt, On the influence of surface roughness on real area of contact in normal, dry, friction free, rough contact by using a neural network, Wear 266(5-6) (2009) 592-595.
    • (2009) Wear , vol.266 , Issue.5-6 , pp. 592-595
    • Rapetto, M.P.1    Almqvist, A.2    Larsson, R.3    Lugt, P.M.4
  • 26
    • 55249106188 scopus 로고    scopus 로고
    • A neural network for predicting saturated liquid density using genetic algorithm for pure and mixed refrigerants
    • A. Mohebbi, M. Taheria, A. Soltania, A neural network for predicting saturated liquid density using genetic algorithm for pure and mixed refrigerants, Int. J. Refrig. 31(8) (2008) 1317-1327.
    • (2008) Int. J. Refrig , vol.31 , Issue.8 , pp. 1317-1327
    • Mohebbi, A.1    Taheria, M.2    Soltania, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.