메뉴 건너뛰기




Volumn 32, Issue 6, 2011, Pages 3183-3188

Corrigendum to "Application of neural network and genetic algorithm to powder metallurgy of pure iron" [Mater. Des., 32, 6, (2011) 3183-3188], 10.1016/j.matdes.2011.02.049;Application of neural network and genetic algorithm to powder metallurgy of pure iron

Author keywords

B. Particulates and powders; C. Powder metallurgy; E. Mechanical properties

Indexed keywords

COMPACTION; COMPRESSION TESTING; GENETIC ALGORITHMS; NEURAL NETWORKS; POWDER METALLURGY; SINTERING; SOFT COMPUTING;

EID: 79953162618     PISSN: 02613069     EISSN: 18734197     Source Type: Journal    
DOI: 10.1016/j.matdes.2014.04.065     Document Type: Erratum
Times cited : (50)

References (23)
  • 1
    • 79953163037 scopus 로고    scopus 로고
    • ASM Handbook, American society of metals, Powder metal technologies and applications. Metal Park, OH: ASM International;
    • ASM Handbook, American society of metals, vol.7. Powder metal technologies and applications. Metal Park, OH: ASM International; 1998.
    • (1998) , vol.7
  • 2
    • 1542664482 scopus 로고    scopus 로고
    • Cambridge International Science Publishing, Cambridge
    • Upadhyaya G.S. Powder metallurgy technology 2002, Cambridge International Science Publishing, Cambridge. 1st ed.
    • (2002) Powder metallurgy technology
    • Upadhyaya, G.S.1
  • 5
    • 34249723766 scopus 로고    scopus 로고
    • The use of artificial neural network in materials science based research
    • Sha W., Edwards K.L. The use of artificial neural network in materials science based research. Mater Des 2007, 28:1747-1752.
    • (2007) Mater Des , vol.28 , pp. 1747-1752
    • Sha, W.1    Edwards, K.L.2
  • 6
    • 37648999460 scopus 로고    scopus 로고
    • Neural network based prediction on mechanical and wear properties of short fibers reinforced polyamide composites
    • Jiang Z., Gyurova L., Zhang Z., Friedrich K., Schlarb A.K. Neural network based prediction on mechanical and wear properties of short fibers reinforced polyamide composites. Mater Des 2008, 29:628-637.
    • (2008) Mater Des , vol.29 , pp. 628-637
    • Jiang, Z.1    Gyurova, L.2    Zhang, Z.3    Friedrich, K.4    Schlarb, A.K.5
  • 7
    • 23944514874 scopus 로고    scopus 로고
    • The use of neural networks for the prediction of wear loss and surface roughness of AA 6351 aluminum alloy
    • Kacar Durmus H., Erdogan Ozkaya E., Meric C. The use of neural networks for the prediction of wear loss and surface roughness of AA 6351 aluminum alloy. Mater Des 2006, 27:156-159.
    • (2006) Mater Des , vol.27 , pp. 156-159
    • Kacar Durmus, H.1    Erdogan Ozkaya, E.2    Meric, C.3
  • 8
    • 2942625542 scopus 로고    scopus 로고
    • Neural network approach to prediction of bending strength and hardening behavior of particulate reinforced (Al-Si-Mg) aluminum matrix composite
    • Altinkok N., Koker R. Neural network approach to prediction of bending strength and hardening behavior of particulate reinforced (Al-Si-Mg) aluminum matrix composite. Mater Des 2004, 25:595-602.
    • (2004) Mater Des , vol.25 , pp. 595-602
    • Altinkok, N.1    Koker, R.2
  • 9
    • 33750324766 scopus 로고    scopus 로고
    • The prediction of mechanical behavior for steel wires and cord materials using neural networks
    • Yilmaz M., Ertunc H.M. The prediction of mechanical behavior for steel wires and cord materials using neural networks. Mater Des 2007, 28:599-608.
    • (2007) Mater Des , vol.28 , pp. 599-608
    • Yilmaz, M.1    Ertunc, H.M.2
  • 10
    • 67349274369 scopus 로고    scopus 로고
    • Effect of different environmental parameters on pitting behavior of AISI type 316L stainless steel: experimental studies and neural network modeling
    • Ramana K.V.S., Anita T., Mandal S., Kaliappan S., Shaikh H., Sivaprasad P.V., et al. Effect of different environmental parameters on pitting behavior of AISI type 316L stainless steel: experimental studies and neural network modeling. Mater Des 2009, 30:3770-3775.
    • (2009) Mater Des , vol.30 , pp. 3770-3775
    • Ramana, K.V.S.1    Anita, T.2    Mandal, S.3    Kaliappan, S.4    Shaikh, H.5    Sivaprasad, P.V.6
  • 11
    • 34249066848 scopus 로고    scopus 로고
    • Prediction of gas metal arc welding parameters based on artificial neural networks
    • Ates H. Prediction of gas metal arc welding parameters based on artificial neural networks. Mater Des 2007, 28:2015-2023.
    • (2007) Mater Des , vol.28 , pp. 2015-2023
    • Ates, H.1
  • 12
    • 74149087750 scopus 로고    scopus 로고
    • Modelling of forming limit diagram of perforated commercial pure aluminum sheets using artificial neural network
    • Elangovan K., Narayanan C.S., Narayanasamy R. Modelling of forming limit diagram of perforated commercial pure aluminum sheets using artificial neural network. Comput Mater Sci 2010, 47:1072-1078.
    • (2010) Comput Mater Sci , vol.47 , pp. 1072-1078
    • Elangovan, K.1    Narayanan, C.S.2    Narayanasamy, R.3
  • 13
    • 39449084379 scopus 로고    scopus 로고
    • Materials selection using an improved genetic algorithm for material design of components made of a multiphase material
    • Zhang X.J., Chen K.Z., Feng X.A. Materials selection using an improved genetic algorithm for material design of components made of a multiphase material. Mater Des 2008, 29:972-981.
    • (2008) Mater Des , vol.29 , pp. 972-981
    • Zhang, X.J.1    Chen, K.Z.2    Feng, X.A.3
  • 14
    • 31344437343 scopus 로고    scopus 로고
    • Optimal design of V and U bending processes using genetic algorithms
    • Sousa L.C., Castro C.F., Antonio C.A.C. Optimal design of V and U bending processes using genetic algorithms. J Mater Process Technol 2006, 172:35-41.
    • (2006) J Mater Process Technol , vol.172 , pp. 35-41
    • Sousa, L.C.1    Castro, C.F.2    Antonio, C.A.C.3
  • 15
    • 45449096454 scopus 로고    scopus 로고
    • Optimization of porosity formation in AlSi9Cu3 pressure die casting using genetic algorithm analysis
    • Tsoukalas V.D. Optimization of porosity formation in AlSi9Cu3 pressure die casting using genetic algorithm analysis. Mater Des 2008, 29:2027-2033.
    • (2008) Mater Des , vol.29 , pp. 2027-2033
    • Tsoukalas, V.D.1
  • 16
    • 77955509229 scopus 로고    scopus 로고
    • Optimal design of powder compaction processes via genetic algorithm techniques
    • Khoei A.R., Keshavarz S., Biabanaki S.O.R. Optimal design of powder compaction processes via genetic algorithm techniques. Finite Elem Anal Des 2010, 46:843-861.
    • (2010) Finite Elem Anal Des , vol.46 , pp. 843-861
    • Khoei, A.R.1    Keshavarz, S.2    Biabanaki, S.O.R.3
  • 17
    • 0033882142 scopus 로고    scopus 로고
    • A neural network approach for selection of powder metallurgy materials and process parameters
    • Cherian R.P., Smith L.N., Midha P.S. A neural network approach for selection of powder metallurgy materials and process parameters. Artif Intell Eng 2000, 14:39-44.
    • (2000) Artif Intell Eng , vol.14 , pp. 39-44
    • Cherian, R.P.1    Smith, L.N.2    Midha, P.S.3
  • 18
    • 79953163154 scopus 로고    scopus 로고
    • Neural network toolboxTM user's guide. Version 6.0.4 (Release 2010a). The math works;
    • Demuth H, Beale M, Hagan M. Neural network toolboxTM user's guide. Version 6.0.4 (Release 2010a). The math works; 2010.
    • (2010)
    • Demuth, H.1    Beale, M.2    Hagan, M.3
  • 22
    • 0037427636 scopus 로고    scopus 로고
    • Prediction of the process parameters of metal powder preform forging using artificial neural network (ANN)
    • Ohdar R.K., Pasha S. Prediction of the process parameters of metal powder preform forging using artificial neural network (ANN). J Mater Process Technol 2003, 132:227-234.
    • (2003) J Mater Process Technol , vol.132 , pp. 227-234
    • Ohdar, R.K.1    Pasha, S.2
  • 23
    • 44749089232 scopus 로고    scopus 로고
    • An analysis of formability of aluminum preforms using neural network
    • Poshala G., Ganesan P. An analysis of formability of aluminum preforms using neural network. J Mater Process Technol 2008, 205:272-282.
    • (2008) J Mater Process Technol , vol.205 , pp. 272-282
    • Poshala, G.1    Ganesan, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.