메뉴 건너뛰기




Volumn 173, Issue 1, 2011, Pages 11-18

Separation of toluene/n-heptane mixtures experimental, modeling and optimization

Author keywords

Composite membrane; Multi objective optimization; Neural network; Pervaporation; Toluene n heptane mixtures

Indexed keywords

BLACK-BOX MODEL; CORRELATION COEFFICIENT; DECISION VARIABLES; EXPERIMENTAL DATA; FEED CONCENTRATION; HIDDEN LAYERS; HIDDEN NEURONS; MEMBRANE PERFORMANCE; MODELING AND OPTIMIZATION; MULTI OBJECTIVE; MULTI-LAYER FEED FORWARD; MULTI-OBJECTIVE GENETIC ALGORITHM; N-HEPTANES; OPERATING CONDITION; OPTIMUM OPERATING CONDITIONS; PARETO FRONT; PARETO SET; PERMEATE PRESSURES; PERMEATION FLUXES; SEPARATION PROCESS; TOTAL FLUX; TRAINING METHODS;

EID: 80052277765     PISSN: 13858947     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cej.2011.07.018     Document Type: Article
Times cited : (34)

References (59)
  • 1
    • 3242796526 scopus 로고    scopus 로고
    • Separation of organic-organic mixtures by pervaporation - a review
    • Smitha B., Suhanya D., Sridhar S., Ramakrishna M. Separation of organic-organic mixtures by pervaporation - a review. J. Membr. Sci. 2004, 241:1-21.
    • (2004) J. Membr. Sci. , vol.241 , pp. 1-21
    • Smitha, B.1    Suhanya, D.2    Sridhar, S.3    Ramakrishna, M.4
  • 2
    • 0342800319 scopus 로고    scopus 로고
    • Diffusion of organic compounds through chemically asymmetric membranes made of semi-interpenetrating polymer networks
    • Billard P., Nguyen Q.T., Leger C., Clement R. Diffusion of organic compounds through chemically asymmetric membranes made of semi-interpenetrating polymer networks. Sep. Purif. Technol. 1998, 14:221-232.
    • (1998) Sep. Purif. Technol. , vol.14 , pp. 221-232
    • Billard, P.1    Nguyen, Q.T.2    Leger, C.3    Clement, R.4
  • 3
    • 0022129684 scopus 로고
    • Review, the separation potential of pervaporation: part 2. Process design and economics
    • Rautenbach R., Albrecht R. Review, the separation potential of pervaporation: part 2. Process design and economics. J. Membr. Sci. 1985, 25:25-54.
    • (1985) J. Membr. Sci. , vol.25 , pp. 25-54
    • Rautenbach, R.1    Albrecht, R.2
  • 4
    • 0035282288 scopus 로고    scopus 로고
    • Preparation and study of crosslinked polyurethane films to fractionate toluene-n-heptane mixtures by pervaporation
    • Roizard D., Nilly D., Lochon P. Preparation and study of crosslinked polyurethane films to fractionate toluene-n-heptane mixtures by pervaporation. Sep. Purif. Technol. 2001, 22-23:45-52.
    • (2001) Sep. Purif. Technol. , vol.22-23 , pp. 45-52
    • Roizard, D.1    Nilly, D.2    Lochon, P.3
  • 5
    • 1842561688 scopus 로고    scopus 로고
    • Separation of aromatic/aliphatic hydrocarbons by photo-modified poly(acrylonitrile) membranes
    • Frahn J., Malsch G., Matuschewski H., Schedler U., Schwarz H.H. Separation of aromatic/aliphatic hydrocarbons by photo-modified poly(acrylonitrile) membranes. J. Membr. Sci. 2004, 234:55-65.
    • (2004) J. Membr. Sci. , vol.234 , pp. 55-65
    • Frahn, J.1    Malsch, G.2    Matuschewski, H.3    Schedler, U.4    Schwarz, H.H.5
  • 6
    • 0032139301 scopus 로고    scopus 로고
    • Ultrathin membranes for gas separation and pervaporation prepared upon electrostatic self-assembly of polyelectrolytes
    • Ackern F.V., Krasemann L., Tieke B. Ultrathin membranes for gas separation and pervaporation prepared upon electrostatic self-assembly of polyelectrolytes. Thin Solid Films 1998, 327-329:762-766.
    • (1998) Thin Solid Films , vol.327-329 , pp. 762-766
    • Ackern, F.V.1    Krasemann, L.2    Tieke, B.3
  • 7
    • 37749001104 scopus 로고    scopus 로고
    • Synthesis of polyimides containing fluorine and their pervaporation performances to aromatic/aliphatic hydrocarbon mixtures
    • Ye H., Li J., Lin Y., Chen J. Synthesis of polyimides containing fluorine and their pervaporation performances to aromatic/aliphatic hydrocarbon mixtures. J. Macromol. Sci. A: Pure Appl. Chem. 2008, 45:172-178.
    • (2008) J. Macromol. Sci. A: Pure Appl. Chem. , vol.45 , pp. 172-178
    • Ye, H.1    Li, J.2    Lin, Y.3    Chen, J.4
  • 8
    • 62649089664 scopus 로고    scopus 로고
    • Investigation of pervaporation hybrid polyvinylchloride membranes for the separation of toluene n-heptane mixtures - case of clays as filler
    • Aouinti L., Roizard L., Hu G.H., Thomas F., Belbachir M. Investigation of pervaporation hybrid polyvinylchloride membranes for the separation of toluene n-heptane mixtures - case of clays as filler. Desalination 2009, 241:174-181.
    • (2009) Desalination , vol.241 , pp. 174-181
    • Aouinti, L.1    Roizard, L.2    Hu, G.H.3    Thomas, F.4    Belbachir, M.5
  • 9
    • 0035555761 scopus 로고    scopus 로고
    • Modeling of pervaporation: models to predict the mass transport in pervaporation
    • Lipnizki F., Trägårdh G. Modeling of pervaporation: models to predict the mass transport in pervaporation. Sep. Purif. Rev. 2001, 30(1):49-125.
    • (2001) Sep. Purif. Rev. , vol.30 , Issue.1 , pp. 49-125
    • Lipnizki, F.1    Trägårdh, G.2
  • 10
    • 0028987364 scopus 로고
    • Dynamic modeling of crossflow microfiltration using neural networks
    • Dornier M., Decloux M., Trystram G., Lebert A. Dynamic modeling of crossflow microfiltration using neural networks. J. Membr. Sci. 1995, 98:263-273.
    • (1995) J. Membr. Sci. , vol.98 , pp. 263-273
    • Dornier, M.1    Decloux, M.2    Trystram, G.3    Lebert, A.4
  • 11
    • 77349122829 scopus 로고    scopus 로고
    • Prediction of microfiltration membrane fouling using artificial neural network models
    • Liu Q.F., Kim S.H., Lee S. Prediction of microfiltration membrane fouling using artificial neural network models. Sep. Purif. Technol. 2009, 70:96-102.
    • (2009) Sep. Purif. Technol. , vol.70 , pp. 96-102
    • Liu, Q.F.1    Kim, S.H.2    Lee, S.3
  • 12
    • 77953387911 scopus 로고    scopus 로고
    • Treatment of oily wastewater using low cost ceramic membrane: comparative assessment of pore blocking and artificial neural network models
    • Nandi B.K., Moparthi A., Uppaluri R., Purkait M.K. Treatment of oily wastewater using low cost ceramic membrane: comparative assessment of pore blocking and artificial neural network models. Chem. Eng. Res. Des. 2010, 88:881-892.
    • (2010) Chem. Eng. Res. Des. , vol.88 , pp. 881-892
    • Nandi, B.K.1    Moparthi, A.2    Uppaluri, R.3    Purkait, M.K.4
  • 13
    • 71849117433 scopus 로고    scopus 로고
    • Joint analysis of transient flux behaviors via membrane fouling in hybrid PAC/MF processes using neural network
    • Aydiner C., Demir I., Keskinler B., Ince O. Joint analysis of transient flux behaviors via membrane fouling in hybrid PAC/MF processes using neural network. Desalination 2010, 250:188-196.
    • (2010) Desalination , vol.250 , pp. 188-196
    • Aydiner, C.1    Demir, I.2    Keskinler, B.3    Ince, O.4
  • 14
    • 33645931361 scopus 로고    scopus 로고
    • Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: a radial basis function neural network approach
    • Chen H., Kim A.S. Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: a radial basis function neural network approach. Desalination 2006, 192:415-428.
    • (2006) Desalination , vol.192 , pp. 415-428
    • Chen, H.1    Kim, A.S.2
  • 15
    • 33747889741 scopus 로고    scopus 로고
    • Predicting flux decline in cross-flow membranes using artificial neural networks and genetic algorithms
    • Sahoo G.B., Ray C. Predicting flux decline in cross-flow membranes using artificial neural networks and genetic algorithms. J. Membr. Sci. 2006, 283:147-157.
    • (2006) J. Membr. Sci. , vol.283 , pp. 147-157
    • Sahoo, G.B.1    Ray, C.2
  • 16
    • 33645931361 scopus 로고    scopus 로고
    • Prediction of permeate flux decline in cross-flow membrane filtration of colloidal suspension: a radial basis function neural networkapproach
    • Chen H., Kim A.S. Prediction of permeate flux decline in cross-flow membrane filtration of colloidal suspension: a radial basis function neural networkapproach. Desalination 2006, 192:415-428.
    • (2006) Desalination , vol.192 , pp. 415-428
    • Chen, H.1    Kim, A.S.2
  • 17
    • 0043169729 scopus 로고    scopus 로고
    • Dynamic modeling of milk ultrafiltration by artificial neural network
    • Razavi S.M.A., Mousavi S.M., Mortazavi S.A. Dynamic modeling of milk ultrafiltration by artificial neural network. J. Membr. Sci. 2003, 220(18):47-58.
    • (2003) J. Membr. Sci. , vol.220 , Issue.18 , pp. 47-58
    • Razavi, S.M.A.1    Mousavi, S.M.2    Mortazavi, S.A.3
  • 18
    • 0742305956 scopus 로고    scopus 로고
    • Application of neural networks for crossflow milk ultrafiltration simulation
    • Razavi M.A., Mortazavi A., Mousavi M. Application of neural networks for crossflow milk ultrafiltration simulation. Int. Dairy J. 2004, 14:69-80.
    • (2004) Int. Dairy J. , vol.14 , pp. 69-80
    • Razavi, M.A.1    Mortazavi, A.2    Mousavi, M.3
  • 19
    • 20744456034 scopus 로고    scopus 로고
    • Modeling the performance of batch ultrafiltration of synthetic fruit juice and mosambi juice using artificial neural network
    • Rai P., Majumdar G.C., DasGupta S., De S. Modeling the performance of batch ultrafiltration of synthetic fruit juice and mosambi juice using artificial neural network. J. Food Eng. 2005, 71:273-281.
    • (2005) J. Food Eng. , vol.71 , pp. 273-281
    • Rai, P.1    Majumdar, G.C.2    DasGupta, S.3    De, S.4
  • 20
    • 10944249746 scopus 로고    scopus 로고
    • Ultrafiltration of BSA in pulsating conditions: an artificial neural networks approach
    • Curcio S., Scilingo G., Calabro V., Iorio G. Ultrafiltration of BSA in pulsating conditions: an artificial neural networks approach. J. Membr. Sci. 2005, 246(2):235-247.
    • (2005) J. Membr. Sci. , vol.246 , Issue.2 , pp. 235-247
    • Curcio, S.1    Scilingo, G.2    Calabro, V.3    Iorio, G.4
  • 21
    • 33751174542 scopus 로고    scopus 로고
    • Reduction and control of flux decline in crossflow membrane processes modeled by artificial neural networks
    • Curcio S., Calabro V., Iorio G. Reduction and control of flux decline in crossflow membrane processes modeled by artificial neural networks. J. Membr. Sci. 2006, 286:125-132.
    • (2006) J. Membr. Sci. , vol.286 , pp. 125-132
    • Curcio, S.1    Calabro, V.2    Iorio, G.3
  • 22
    • 60549093196 scopus 로고    scopus 로고
    • Predition of permeate flux during electric field enhanced cross-flow ultrafiltration-A neural network approach
    • Sarkar B., Sengupta A., De S., DasGupta S. Predition of permeate flux during electric field enhanced cross-flow ultrafiltration-A neural network approach. Sep. Purif. Technol. 2009, 65:260-268.
    • (2009) Sep. Purif. Technol. , vol.65 , pp. 260-268
    • Sarkar, B.1    Sengupta, A.2    De, S.3    DasGupta, S.4
  • 23
    • 78149280764 scopus 로고    scopus 로고
    • Modeling and optimization of membrane fabrication using artificial neural network and genetic algorithm
    • Madaeni S.S., Tavajohi Hasankiadeh N., Kurdian A.R., Rahimpour A. Modeling and optimization of membrane fabrication using artificial neural network and genetic algorithm. Sep. Purif. Technol. 2010, 76:33-43.
    • (2010) Sep. Purif. Technol. , vol.76 , pp. 33-43
    • Madaeni, S.S.1    Tavajohi Hasankiadeh, N.2    Kurdian, A.R.3    Rahimpour, A.4
  • 24
    • 71549144442 scopus 로고    scopus 로고
    • Predicting the flux decline in milk cross-flow ceramic ultrafiltration by artificial neural networks
    • Guadix A., Zapata J.E., Almecija M.C., Guadix E.M. Predicting the flux decline in milk cross-flow ceramic ultrafiltration by artificial neural networks. Desalination 2010, 250:1118-1120.
    • (2010) Desalination , vol.250 , pp. 1118-1120
    • Guadix, A.1    Zapata, J.E.2    Almecija, M.C.3    Guadix, E.M.4
  • 25
    • 0038054285 scopus 로고    scopus 로고
    • Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural Networks
    • Shetty G.R., Chellam S. Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural Networks. J. Membr. Sci. 2003, 217:69-86.
    • (2003) J. Membr. Sci. , vol.217 , pp. 69-86
    • Shetty, G.R.1    Chellam, S.2
  • 26
    • 0034631748 scopus 로고    scopus 로고
    • Predicting salt rejection at nanofiltration membranes using artificial neural networks
    • Bowen W.R., Jones M.G., Webfoot J.S., Yousef H.N.S. Predicting salt rejection at nanofiltration membranes using artificial neural networks. Desalination 2000, 129:147-162.
    • (2000) Desalination , vol.129 , pp. 147-162
    • Bowen, W.R.1    Jones, M.G.2    Webfoot, J.S.3    Yousef, H.N.S.4
  • 27
    • 33846786458 scopus 로고    scopus 로고
    • Rejection and modeling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler-Kedem model
    • Al-Zoubi H., Hilal N., Darwish N.A., Mohammad A.W. Rejection and modeling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler-Kedem model. Desalination 2007, 206:42-60.
    • (2007) Desalination , vol.206 , pp. 42-60
    • Al-Zoubi, H.1    Hilal, N.2    Darwish, N.A.3    Mohammad, A.W.4
  • 28
    • 0028989580 scopus 로고
    • Simulation of membrane separation by neural networks
    • Niemi H., Bulsari A., Palosaari S. Simulation of membrane separation by neural networks. J. Membr. Sci. 1995, 102:185-191.
    • (1995) J. Membr. Sci. , vol.102 , pp. 185-191
    • Niemi, H.1    Bulsari, A.2    Palosaari, S.3
  • 29
    • 24944461921 scopus 로고    scopus 로고
    • Predicting RO/NFwater quality by modified solution diffusion model and artificial neural networks
    • Zhao Y., Taylor J.S., Chellam S. Predicting RO/NFwater quality by modified solution diffusion model and artificial neural networks. J. Membr. Sci. 2005, 263:38-46.
    • (2005) J. Membr. Sci. , vol.263 , pp. 38-46
    • Zhao, Y.1    Taylor, J.S.2    Chellam, S.3
  • 30
    • 27744448208 scopus 로고    scopus 로고
    • Modeling of an RO water desalination unit using neural networks
    • Abbas A., Al-Bastaki N. Modeling of an RO water desalination unit using neural networks. Chem. Eng. J. 2005, 114:139-143.
    • (2005) Chem. Eng. J. , vol.114 , pp. 139-143
    • Abbas, A.1    Al-Bastaki, N.2
  • 31
    • 46449122568 scopus 로고    scopus 로고
    • Neural networks for predictive modeling and optimization of large-scale commercial water desalination plants
    • Al-Shayji K., Liu Y.A. Neural networks for predictive modeling and optimization of large-scale commercial water desalination plants. Proc. IDAWorld Congress Desalination Water Sci. 1 1997, 1-15.
    • (1997) Proc. IDAWorld Congress Desalination Water Sci. 1 , pp. 1-15
    • Al-Shayji, K.1    Liu, Y.A.2
  • 32
    • 0037065279 scopus 로고    scopus 로고
    • Predictive modeling of large-scale commercial water desalination plants: data-based neural network and model-based process simulation
    • Al-Shayji K., Liu Y.A. Predictive modeling of large-scale commercial water desalination plants: data-based neural network and model-based process simulation. Ind. Eng. Chem. Res. 2002, 41(25):6460-6474.
    • (2002) Ind. Eng. Chem. Res. , vol.41 , Issue.25 , pp. 6460-6474
    • Al-Shayji, K.1    Liu, Y.A.2
  • 33
    • 0035917629 scopus 로고    scopus 로고
    • Adaptive receptive fields for radial basis functions
    • Jafar M.M., Zilouchian A. Adaptive receptive fields for radial basis functions. Desalination 2001, 135:83-91.
    • (2001) Desalination , vol.135 , pp. 83-91
    • Jafar, M.M.1    Zilouchian, A.2
  • 34
    • 34248587417 scopus 로고    scopus 로고
    • Neural networks modeling of hollow fiber membrane processes
    • Shahsavand A., Pourafshari Chenar M. Neural networks modeling of hollow fiber membrane processes. J. Membr. Sci. 2007, 297:59-73.
    • (2007) J. Membr. Sci. , vol.297 , pp. 59-73
    • Shahsavand, A.1    Pourafshari Chenar, M.2
  • 35
    • 33750307883 scopus 로고    scopus 로고
    • Radial basis function neural networks based modeling of the membrane separation process: hydrogen recovery from refinery gases
    • Wang L., Shao C., Wang H., Wu H. Radial basis function neural networks based modeling of the membrane separation process: hydrogen recovery from refinery gases. J. Nat. Gas Chem. 2006, 15:230-234.
    • (2006) J. Nat. Gas Chem. , vol.15 , pp. 230-234
    • Wang, L.1    Shao, C.2    Wang, H.3    Wu, H.4
  • 36
    • 70450128099 scopus 로고    scopus 로고
    • C3H8 separation from CH4 and H2 using a synthesized PDMS membrane: experimental and neural network modeling
    • Shokrian M., Sadrzadeh M., Mohammadi T. C3H8 separation from CH4 and H2 using a synthesized PDMS membrane: experimental and neural network modeling. J. Membr. Sci. 2010, 346:59-70.
    • (2010) J. Membr. Sci. , vol.346 , pp. 59-70
    • Shokrian, M.1    Sadrzadeh, M.2    Mohammadi, T.3
  • 37
    • 27644555231 scopus 로고    scopus 로고
    • Modeling approaches for filtration processes with novel submerged capillary modules in membrane bioreactors for wastewater treatment
    • Geissler S., Wintgens T., Melin T., Vossenkaul K., Kullmann C. Modeling approaches for filtration processes with novel submerged capillary modules in membrane bioreactors for wastewater treatment. Desalination 2005, 178:125-134.
    • (2005) Desalination , vol.178 , pp. 125-134
    • Geissler, S.1    Wintgens, T.2    Melin, T.3    Vossenkaul, K.4    Kullmann, C.5
  • 38
    • 33745941576 scopus 로고    scopus 로고
    • Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network
    • Cinar O., Hasar H., Kinaci C. Modeling of submerged membrane bioreactor treating cheese whey wastewater by artificial neural network. J. Biotechnol. 2006, 123:204-209.
    • (2006) J. Biotechnol. , vol.123 , pp. 204-209
    • Cinar, O.1    Hasar, H.2    Kinaci, C.3
  • 39
    • 53449086599 scopus 로고    scopus 로고
    • Separation of lead ions from wastewater using electrodialysis: comparing mathematical and neural network modeling
    • Sadrzadeh M., Mohammadi T., Ivakpour J., Kasiri N. Separation of lead ions from wastewater using electrodialysis: comparing mathematical and neural network modeling. Chem. Eng. J. 2008, 144:431-441.
    • (2008) Chem. Eng. J. , vol.144 , pp. 431-441
    • Sadrzadeh, M.1    Mohammadi, T.2    Ivakpour, J.3    Kasiri, N.4
  • 40
    • 78349307072 scopus 로고    scopus 로고
    • Prediction of the charged dialysis process performance using a deterministic model
    • Godini H.R., Madaeni S.S., Vasheghani Farahani E., Part I. Prediction of the charged dialysis process performance using a deterministic model. Desalination 2011, 265:1-10.
    • (2011) Desalination , vol.265 , pp. 1-10
    • Godini, H.R.1    Madaeni, S.S.2    Vasheghani Farahani, E.3    Part, I.4
  • 41
    • 38849104776 scopus 로고    scopus 로고
    • MSE - modified membranes in organophilic pervaporation for aromatics/aliphatics separation
    • Matuschewski H., Schedler H. MSE - modified membranes in organophilic pervaporation for aromatics/aliphatics separation. Desalination 2008, 224:124-131.
    • (2008) Desalination , vol.224 , pp. 124-131
    • Matuschewski, H.1    Schedler, H.2
  • 45
    • 34249723766 scopus 로고    scopus 로고
    • The use of artificial neural networks in materials science based research
    • Sha W., Edwards K.L. The use of artificial neural networks in materials science based research. Mater. Des. 2007, 28:1747-1752.
    • (2007) Mater. Des. , vol.28 , pp. 1747-1752
    • Sha, W.1    Edwards, K.L.2
  • 47
    • 33747889741 scopus 로고    scopus 로고
    • Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms
    • Sahoo G.B., Ray C. Predicting flux decline in crossflow membranes using artificial neural networks and genetic algorithms. J. Membr. Sci. 2006, 283:147-157.
    • (2006) J. Membr. Sci. , vol.283 , pp. 147-157
    • Sahoo, G.B.1    Ray, C.2
  • 48
    • 0032051569 scopus 로고    scopus 로고
    • The effect of internal parameters and geometry on performance of back-propagation neural network: an empirical study
    • Maier H.R., Dandy G.C. The effect of internal parameters and geometry on performance of back-propagation neural network: an empirical study. Environ. Model. Softw. 1998, 13:193-209.
    • (1998) Environ. Model. Softw. , vol.13 , pp. 193-209
    • Maier, H.R.1    Dandy, G.C.2
  • 49
    • 0024880831 scopus 로고
    • Multi-layer feedforward networks are universal approximations
    • Hornik K., Stinchombe M., White H. Multi-layer feedforward networks are universal approximations. Neural Netw. 1989, 2:359-366.
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchombe, M.2    White, H.3
  • 50
    • 0028416331 scopus 로고
    • Neural networks in civil engineering. I. Principles and understanding
    • Flood I., Kartam N. Neural networks in civil engineering. I. Principles and understanding. J. Comput. Civil Eng. 1994, 8:131-148.
    • (1994) J. Comput. Civil Eng. , vol.8 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 54
    • 20444445001 scopus 로고    scopus 로고
    • Artificial neural network model for transient crossflow microfiltration of polydispersed suspension
    • Chellama S. Artificial neural network model for transient crossflow microfiltration of polydispersed suspension. J. Membr. Sci. 2005, 258:35-42.
    • (2005) J. Membr. Sci. , vol.258 , pp. 35-42
    • Chellama, S.1
  • 55
    • 33746770437 scopus 로고    scopus 로고
    • Dead-end filtration of yeast suspensions: correlating specific resistance and flux data using artificial neural networks
    • Mhurchu J.N., Foley G. Dead-end filtration of yeast suspensions: correlating specific resistance and flux data using artificial neural networks. J. Membr. Sci. 2006, 281:325-333.
    • (2006) J. Membr. Sci. , vol.281 , pp. 325-333
    • Mhurchu, J.N.1    Foley, G.2
  • 59
    • 33745727034 scopus 로고    scopus 로고
    • Multi-objective optimization using genetic algorithms: a tutorial
    • Konak A., Coit D.W., Smith A.E. Multi-objective optimization using genetic algorithms: a tutorial. Reliab. Eng. Syst. Saf. 2006, 91:992-1007.
    • (2006) Reliab. Eng. Syst. Saf. , vol.91 , pp. 992-1007
    • Konak, A.1    Coit, D.W.2    Smith, A.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.