메뉴 건너뛰기




Volumn 76, Issue 1, 2010, Pages 33-43

Modeling and optimization of membrane fabrication using artificial neural network and genetic algorithm

Author keywords

Artificial neural network; Genetic algorithm; Membrane; Modeling; Optimization

Indexed keywords

2-PROPANOL; ADDITIVE CONCENTRATIONS; ARTIFICIAL NEURAL NETWORK; EXPERIMENTAL DATA; EXPERIMENTAL SECTION; MAXIMUM FLUX; MEMBRANE FABRICATION; MEMBRANE PERFORMANCE; MEMBRANE PREPARATION; MODELING; MODELING AND OPTIMIZATION; N ,N-DIMETHYLACETAMIDE; NON-SOLVENTS; OPTIMUM CONCENTRATION; POLYETHERSULFONES; POLYVINYL PYRROLIDONE; QUATERNARY SYSTEMS; RELATIVE ERRORS; SEM MICROGRAPHS; THERMAL PROPERTIES;

EID: 78149280764     PISSN: 13835866     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.seppur.2010.09.017     Document Type: Article
Times cited : (62)

References (29)
  • 1
    • 2442581294 scopus 로고    scopus 로고
    • Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy
    • J. Barzin, C. Feng, K.C. Khulbe, T. Matsuura, S.S. Madaeni, and H. Mirzadeh Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy J. Membr. Sci. 237 2004 77 85
    • (2004) J. Membr. Sci. , vol.237 , pp. 77-85
    • Barzin, J.1    Feng, C.2    Khulbe, K.C.3    Matsuura, T.4    Madaeni, S.S.5    Mirzadeh, H.6
  • 2
    • 39149140373 scopus 로고    scopus 로고
    • Synthesis of a novel poly (amide-imide) (PAI) and preparation and characterization of PAI blended polyethersulfone (PES) membranes
    • A. Rahimpour, S.S. Madaeni, and S. Mehdipour-Ataei Synthesis of a novel poly (amide-imide) (PAI) and preparation and characterization of PAI blended polyethersulfone (PES) membranes J. Membr. Sci. 311 2008 349 359
    • (2008) J. Membr. Sci. , vol.311 , pp. 349-359
    • Rahimpour, A.1    Madaeni, S.S.2    Mehdipour-Ataei, S.3
  • 3
    • 34247618233 scopus 로고    scopus 로고
    • The effect of anionic, non-ionic and cationic surfactants on morphology and performance of polyethersulfone ultrafiltration membranes for milk concentration
    • A. Rahimpour, S.S. Madaeni, and Y. Mansourpanah The effect of anionic, non-ionic and cationic surfactants on morphology and performance of polyethersulfone ultrafiltration membranes for milk concentration J. Membr. Sci. 296 2007 110 121
    • (2007) J. Membr. Sci. , vol.296 , pp. 110-121
    • Rahimpour, A.1    Madaeni, S.S.2    Mansourpanah, Y.3
  • 4
    • 44849141066 scopus 로고    scopus 로고
    • Artificial neural network simulation of combined humic substance coagulation and membrane filtration
    • M. Al-Abri, and N. Hilal Artificial neural network simulation of combined humic substance coagulation and membrane filtration Chem. Eng. J. 141 2008 27 34
    • (2008) Chem. Eng. J. , vol.141 , pp. 27-34
    • Al-Abri, M.1    Hilal, N.2
  • 5
    • 0742305956 scopus 로고    scopus 로고
    • Application of neural networks for cross flow milk ultrafiltration simulation
    • M.A. Razavia, A. Mortazavia, and M. Mousavi Application of neural networks for cross flow milk ultrafiltration simulation Int. Dairy J. 14 2004 69 80
    • (2004) Int. Dairy J. , vol.14 , pp. 69-80
    • Razavia, M.A.1    Mortazavia, A.2    Mousavi, M.3
  • 6
    • 33846786458 scopus 로고    scopus 로고
    • Rejection and modeling of sulphate and potassium salts by nanofiltration membranes: Neural network and Spiegler-Kedem model
    • H. Al-Zoubia, N. Hilala, N.A. Darwishb, and A.W. Mohammad Rejection and modeling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler-Kedem model Desalination 206 2007 42 60
    • (2007) Desalination , vol.206 , pp. 42-60
    • Al-Zoubia, H.1    Hilala, N.2    Darwishb, N.A.3    Mohammad, A.W.4
  • 7
    • 10944249746 scopus 로고    scopus 로고
    • Ultrafiltration of BSA in pulsating conditions: An artificial neural networks approach
    • S. Curcio, G. Scilingo, V. Calabr'o, and G. Iorio Ultrafiltration of BSA in pulsating conditions: an artificial neural networks approach J. Membr. Sci. 246 2005 235 247
    • (2005) J. Membr. Sci. , vol.246 , pp. 235-247
    • Curcio, S.1    Scilingo, G.2    Calabr'O, V.3    Iorio, G.4
  • 8
    • 0032486814 scopus 로고    scopus 로고
    • Dynamic ultrafiltration of proteins - A neural network approach
    • W.R. Bowen, M.G. Jones, and H.N.S. Yousef Dynamic ultrafiltration of proteins - a neural network approach J. Membr. Sci. 146 1998 225 235
    • (1998) J. Membr. Sci. , vol.146 , pp. 225-235
    • Bowen, W.R.1    Jones, M.G.2    Yousef, H.N.S.3
  • 9
    • 0032216181 scopus 로고    scopus 로고
    • Prediction of the rate of cross flow membrane ultrafiltration of colloids: A neural network approach
    • W.R. Bowen, M.G. Jones, and H.N.S. Yousef Prediction of the rate of cross flow membrane ultrafiltration of colloids: a neural network approach Chem. Eng. Sci. 53 22 1998 3793 3802
    • (1998) Chem. Eng. Sci. , vol.53 , Issue.22 , pp. 3793-3802
    • Bowen, W.R.1    Jones, M.G.2    Yousef, H.N.S.3
  • 10
    • 0028987364 scopus 로고
    • Dynamic modeling of cross flow microfiltration using neural networks
    • M. Dornier, M. Decloux, G. Trystram, and A. Lebert Dynamic modeling of cross flow microfiltration using neural networks J. Membr. Sci. 98 1995 263 273
    • (1995) J. Membr. Sci. , vol.98 , pp. 263-273
    • Dornier, M.1    Decloux, M.2    Trystram, G.3    Lebert, A.4
  • 11
    • 0028989580 scopus 로고
    • Simulation of membrane separation by neural networks
    • H. Niemi, A. Bulsari, and S. Palosaari Simulation of membrane separation by neural networks J. Membr. Sci. 102 1995 185 191
    • (1995) J. Membr. Sci. , vol.102 , pp. 185-191
    • Niemi, H.1    Bulsari, A.2    Palosaari, S.3
  • 12
    • 0032508908 scopus 로고    scopus 로고
    • Neural networks for prediction of ultrafiltration transmembrane pressure - Application to drinking water production
    • N. Delgrange, C. Cabassuda, M. Cabassudb, L. Durand-Bourlierc, and J.M. Laine Neural networks for prediction of ultrafiltration transmembrane pressure - application to drinking water production J. Membr. Sci. 150 1998 111 123
    • (1998) J. Membr. Sci. , vol.150 , pp. 111-123
    • Delgrange, N.1    Cabassuda, C.2    Cabassudb, M.3    Durand-Bourlierc, L.4    Laineâ, J.M.5
  • 13
    • 0034631748 scopus 로고    scopus 로고
    • Predicting salt rejection at nanofiltration membranes using artificial neural networks
    • W.R. Bowen, M.G. Jones, J.S. Webfoot, and H.N.S. Yousef Predicting salt rejection at nanofiltration membranes using artificial neural networks Desalination 129 2000 147 162
    • (2000) Desalination , vol.129 , pp. 147-162
    • Bowen, W.R.1    Jones, M.G.2    Webfoot, J.S.3    Yousef, H.N.S.4
  • 14
    • 0034672848 scopus 로고    scopus 로고
    • Neural network models for ultrafiltration and backwashing
    • C. Teodosiu, O. Pastravanu, and M. Macoveanu Neural network models for ultrafiltration and backwashing Water Res. 34 18 2000 4371 4380
    • (2000) Water Res. , vol.34 , Issue.18 , pp. 4371-4380
    • Teodosiu, C.1    Pastravanu, O.2    MacOveanu, M.3
  • 15
    • 0043169729 scopus 로고    scopus 로고
    • Dynamic modelling of milk ultrafiltration by artificial neural network
    • M.A. Razavi, A. Mortazavi, and M. Mousavi Dynamic modelling of milk ultrafiltration by artificial neural network J. Membr. Sci. 220 2003 47 58
    • (2003) J. Membr. Sci. , vol.220 , pp. 47-58
    • Razavi, M.A.1    Mortazavi, A.2    Mousavi, M.3
  • 16
    • 33751174542 scopus 로고    scopus 로고
    • Reduction and control of flux decline in cross-flow membrane processes modeled by artificial neural networks
    • S. Curcio, V. Calabr'o, and G. Iorio Reduction and control of flux decline in cross-flow membrane processes modeled by artificial neural networks J. Membr. Sci. 286 2006 125 132
    • (2006) J. Membr. Sci. , vol.286 , pp. 125-132
    • Curcio, S.1    Calabr'O, V.2    Iorio, G.3
  • 17
    • 33645931361 scopus 로고    scopus 로고
    • Prediction of permeate flux decline in cross flow membrane filtration of colloidal suspension: A radial basis function neural network approach
    • H. Chen, and A.S. Kim Prediction of permeate flux decline in cross flow membrane filtration of colloidal suspension: a radial basis function neural network approach Desalination 192 2006 415 428
    • (2006) Desalination , vol.192 , pp. 415-428
    • Chen, H.1    Kim, A.S.2
  • 18
    • 33747889741 scopus 로고    scopus 로고
    • Predicting flux decline in cross flow membranes using artificial neural networks and genetic algorithms
    • G.B. Sahoo, and C. Ray Predicting flux decline in cross flow membranes using artificial neural networks and genetic algorithms J. Membr. Sci. 283 2006 147 157
    • (2006) J. Membr. Sci. , vol.283 , pp. 147-157
    • Sahoo, G.B.1    Ray, C.2
  • 19
    • 24944461921 scopus 로고    scopus 로고
    • Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks
    • Y. Zhao, J.S. Taylor, and S. Chellam Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks J. Membr. Sci. 263 2005 38 46
    • (2005) J. Membr. Sci. , vol.263 , pp. 38-46
    • Zhao, Y.1    Taylor, J.S.2    Chellam, S.3
  • 20
    • 20744456034 scopus 로고    scopus 로고
    • Modeling the performance of batch ultrafiltration of synthetic fruit juice and mosambi juice using artificial neural network
    • P. Rai, G.C. Majumdar, S. DasGupta, and S. De Modeling the performance of batch ultrafiltration of synthetic fruit juice and mosambi juice using artificial neural network J. Food Eng. 71 3 2005 273 281
    • (2005) J. Food Eng. , vol.71 , Issue.3 , pp. 273-281
    • Rai, P.1    Majumdar, G.C.2    Dasgupta, S.3    De, S.4
  • 21
    • 70450128099 scopus 로고    scopus 로고
    • 2 using a synthesized PDMS membrane: Experimental and neural network modeling
    • 2 using a synthesized PDMS membrane: experimental and neural network modeling J. Membr. Sci. 346 2010 59 70
    • (2010) J. Membr. Sci. , vol.346 , pp. 59-70
    • Shokriana, M.1    Sadrzadehb, M.2    Mohammadi, T.3
  • 22
    • 0003593041 scopus 로고    scopus 로고
    • PWS Publishing Company, a Division of Thomas Learning United States of America
    • M.T. Hagan, and H.B. Demuth Neural Network Design 1996 PWS Publishing Company, a Division of Thomas Learning United States of America
    • (1996) Neural Network Design
    • Hagan, M.T.1    Demuth, H.B.2
  • 24
    • 67349201716 scopus 로고    scopus 로고
    • A DNA based genetic algorithm for parameter estimation in the hydrogenation reaction
    • X. Chen, and N. Wang A DNA based genetic algorithm for parameter estimation in the hydrogenation reaction Chem. Eng. J. 150 2009 527 535
    • (2009) Chem. Eng. J. , vol.150 , pp. 527-535
    • Chen, X.1    Wang, N.2
  • 25
    • 34547954142 scopus 로고    scopus 로고
    • Analysis of solvent flux through nanofiltration membranes by mechanistic, chemometric and hybrid modeling
    • J.L.C. Santos, A.M. Hidalgo, R. Oliveira, S. Velizarov, and J.G. Crespo Analysis of solvent flux through nanofiltration membranes by mechanistic, chemometric and hybrid modeling J. Membr. Sci. 300 2007 191 204
    • (2007) J. Membr. Sci. , vol.300 , pp. 191-204
    • Santos, J.L.C.1    Hidalgo, A.M.2    Oliveira, R.3    Velizarov, S.4    Crespo, J.G.5
  • 26
    • 0035876942 scopus 로고    scopus 로고
    • Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes: Characterization of polyethersulfone UF membrane with dope containing different PVP
    • N.A. Ochoa, P. Prandanos, L. Palacio, C. Pagliero, J. Marches, and A. Hernandez Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes: characterization of polyethersulfone UF membrane with dope containing different PVP J. Membr. Sci. 187 2001 227 237
    • (2001) J. Membr. Sci. , vol.187 , pp. 227-237
    • Ochoa, N.A.1    Prandanos, P.2    Palacio, L.3    Pagliero, C.4    Marches, J.5    Hernandez, A.6
  • 28
    • 0003828697 scopus 로고    scopus 로고
    • Co published by Halsted Press and John Wiley & Sons Inc. United States of America
    • M. Ian, and Smallwood Handbook of Organic Solvent Properties 1996 Co published by Halsted Press and John Wiley & Sons Inc. United States of America
    • (1996) Handbook of Organic Solvent Properties
    • Ian, M.1    Smallwood2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.