-
1
-
-
84865836123
-
Ubiquitin-mediated control of plant homone signaling
-
Kelley D.R., Estelle M. Ubiquitin-mediated control of plant homone signaling. Plant Physiol. 2012, 160:47-55.
-
(2012)
Plant Physiol.
, vol.160
, pp. 47-55
-
-
Kelley, D.R.1
Estelle, M.2
-
2
-
-
84865551586
-
The ubiquitin-proteasome system: central modifier of plant signalling
-
Sadanandom A., et al. The ubiquitin-proteasome system: central modifier of plant signalling. New Phytol. 2012, 196:13-28.
-
(2012)
New Phytol.
, vol.196
, pp. 13-28
-
-
Sadanandom, A.1
-
3
-
-
3242665372
-
The ubiquitin 26S proteasome proteolytic pathway
-
Smalle J., Vierstra R.D. The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 2004, 55:555-590.
-
(2004)
Annu. Rev. Plant Biol.
, vol.55
, pp. 555-590
-
-
Smalle, J.1
Vierstra, R.D.2
-
4
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78:477-513.
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
5
-
-
84856233599
-
Comparison of phytohormone signaling mechanisms
-
Shan X.Y., et al. Comparison of phytohormone signaling mechanisms. Curr. Opin. Plant Biol. 2012, 15:84-91.
-
(2012)
Curr. Opin. Plant Biol.
, vol.15
, pp. 84-91
-
-
Shan, X.Y.1
-
6
-
-
84860672297
-
Evolution of jasmonate and salicylate signal crosstalk
-
Thaler J.S., et al. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012, 17:260-270.
-
(2012)
Trends Plant Sci.
, vol.17
, pp. 260-270
-
-
Thaler, J.S.1
-
7
-
-
65849096454
-
Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity
-
Spoel S.H., et al. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 2009, 137:860-872.
-
(2009)
Cell
, vol.137
, pp. 860-872
-
-
Spoel, S.H.1
-
8
-
-
68849129110
-
Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module
-
Chini A., et al. Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. FEBS J. 2009, 276:4682-4692.
-
(2009)
FEBS J.
, vol.276
, pp. 4682-4692
-
-
Chini, A.1
-
9
-
-
84865846822
-
Hormonal modulation of plant immunity
-
Pieterse C.M.J., et al. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012, 28:489-521.
-
(2012)
Annu. Rev. Cell Dev. Biol.
, vol.28
, pp. 489-521
-
-
Pieterse, C.M.J.1
-
10
-
-
84865847703
-
Ubiquitination during plant immune signaling
-
Marino D., et al. Ubiquitination during plant immune signaling. Plant Physiol. 2012, 160:15-27.
-
(2012)
Plant Physiol.
, vol.160
, pp. 15-27
-
-
Marino, D.1
-
11
-
-
75249101443
-
Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases
-
Hicks S.W., Galan J.E. Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases. Curr. Opin. Microbiol. 2010, 13:41-46.
-
(2010)
Curr. Opin. Microbiol.
, vol.13
, pp. 41-46
-
-
Hicks, S.W.1
Galan, J.E.2
-
12
-
-
33751100626
-
The plant immune system
-
Jones J.D.G., Dangl J.L. The plant immune system. Nature 2006, 444:323-329.
-
(2006)
Nature
, vol.444
, pp. 323-329
-
-
Jones, J.D.G.1
Dangl, J.L.2
-
13
-
-
66249135697
-
A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors
-
Boller T., Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 2009, 60:379-406.
-
(2009)
Annu. Rev. Plant Biol.
, vol.60
, pp. 379-406
-
-
Boller, T.1
Felix, G.2
-
14
-
-
84891373181
-
Toll-like receptors
-
Academic Press, J.L. William, M.D. Lane (Eds.)
-
Kumar H., et al. Toll-like receptors. Encyclopedia of Biological Chemistry 2013, 396-401. Academic Press. J.L. William, M.D. Lane (Eds.).
-
(2013)
Encyclopedia of Biological Chemistry
, pp. 396-401
-
-
Kumar, H.1
-
15
-
-
84864503694
-
Plant-bacterial pathogen interactions mediated by type III effectors
-
Feng F., Zhou J.M. Plant-bacterial pathogen interactions mediated by type III effectors. Curr. Opin. Plant Biol. 2012, 15:469-476.
-
(2012)
Curr. Opin. Plant Biol.
, vol.15
, pp. 469-476
-
-
Feng, F.1
Zhou, J.M.2
-
16
-
-
84859268600
-
Pseudomonas syringae type III effector repertoires: last words in endless arguments
-
Lindeberg M., et al. Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol. 2012, 20:199-208.
-
(2012)
Trends Microbiol.
, vol.20
, pp. 199-208
-
-
Lindeberg, M.1
-
17
-
-
79960210750
-
Programmed cell death in the plant immune system
-
Coll N.S., et al. Programmed cell death in the plant immune system. Cell Death Differ. 2011, 18:1247-1256.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 1247-1256
-
-
Coll, N.S.1
-
19
-
-
33644527550
-
Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity
-
Abramovitch R.B., et al. Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:2851-2856.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 2851-2856
-
-
Abramovitch, R.B.1
-
20
-
-
30844458212
-
A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase
-
Janjusevic R., et al. A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 2006, 311:222-226.
-
(2006)
Science
, vol.311
, pp. 222-226
-
-
Janjusevic, R.1
-
21
-
-
33745822814
-
Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis
-
de Torres M., et al. Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J. 2006, 47:368-382.
-
(2006)
Plant J.
, vol.47
, pp. 368-382
-
-
de Torres, M.1
-
22
-
-
34447542796
-
A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity
-
Rosebrock T.R., et al. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 2007, 448:370-374.
-
(2007)
Nature
, vol.448
, pp. 370-374
-
-
Rosebrock, T.R.1
-
23
-
-
61449086250
-
AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants
-
Gimenez-Ibanez S., et al. AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr. Biol. 2009, 19:423-429.
-
(2009)
Curr. Biol.
, vol.19
, pp. 423-429
-
-
Gimenez-Ibanez, S.1
-
24
-
-
84875074459
-
A pathogen type III effector with a novel E3 ubiquitin ligase architecture
-
Singer A.U., et al. A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog. 2013, 9:e1003121.
-
(2013)
PLoS Pathog.
, vol.9
-
-
Singer, A.U.1
-
25
-
-
33746002275
-
A bacterial virulence protein suppresses host innate immunity to cause plant disease
-
Nomura K., et al. A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 2006, 313:220-223.
-
(2006)
Science
, vol.313
, pp. 220-223
-
-
Nomura, K.1
-
26
-
-
3142521716
-
Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system
-
Cunnac S., et al. Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system. Mol. Microbiol. 2004, 53:115-128.
-
(2004)
Mol. Microbiol.
, vol.53
, pp. 115-128
-
-
Cunnac, S.1
-
27
-
-
81055156137
-
Functional diversification of the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different plant hosts
-
Remigi P., et al. Functional diversification of the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different plant hosts. New Phytol. 2011, 192:976-987.
-
(2011)
New Phytol.
, vol.192
, pp. 976-987
-
-
Remigi, P.1
-
28
-
-
33749257294
-
Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants
-
Angot A., et al. Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:14620-14625.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 14620-14625
-
-
Angot, A.1
-
29
-
-
77954670354
-
NleG type 3 effectors from enterohaemorrhagic Escherichia coli are U-box E3 ubiquitin ligases
-
Wu B., et al. NleG type 3 effectors from enterohaemorrhagic Escherichia coli are U-box E3 ubiquitin ligases. PLoS Pathog. 2010, 6:e1000960.
-
(2010)
PLoS Pathog.
, vol.6
-
-
Wu, B.1
-
30
-
-
79955604109
-
The EHEC type III effector NleL is an E3 ubiquitin ligase that modulates pedestal formation
-
Piscatelli H., et al. The EHEC type III effector NleL is an E3 ubiquitin ligase that modulates pedestal formation. PLoS ONE 2011, 6:e19331.
-
(2011)
PLoS ONE
, vol.6
-
-
Piscatelli, H.1
-
31
-
-
57149105701
-
Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases
-
Singer A.U., et al. Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat. Struct. Mol. Biol. 2008, 15:1293-1301.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 1293-1301
-
-
Singer, A.U.1
-
32
-
-
33947727977
-
Type III secretion effectors of the IpaH family are E3 ubiquitin ligases
-
Rohde J.R., et al. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 2007, 1:77-83.
-
(2007)
Cell Host Microbe
, vol.1
, pp. 77-83
-
-
Rohde, J.R.1
-
33
-
-
63849280748
-
A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases
-
Quezada C.M., et al. A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4864-4869.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 4864-4869
-
-
Quezada, C.M.1
-
34
-
-
37849010910
-
Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase
-
Diao J., et al. Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nat. Struct. Mol. Biol. 2008, 15:65-70.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 65-70
-
-
Diao, J.1
-
35
-
-
77953097908
-
Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1
-
Bos J.I.B., et al. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:9909-9914.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 9909-9914
-
-
Bos, J.I.B.1
-
36
-
-
79954577688
-
CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a
-
Gilroy E.M., et al. CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. New Phytol. 2011, 190:653-666.
-
(2011)
New Phytol.
, vol.190
, pp. 653-666
-
-
Gilroy, E.M.1
-
37
-
-
84881436954
-
Manipulation of host proteasomes as a virulence mechanism of plant pathogens
-
Dudler R. Manipulation of host proteasomes as a virulence mechanism of plant pathogens. Annu. Rev. Phytopathol. 2013, 51:521-542.
-
(2013)
Annu. Rev. Phytopathol.
, vol.51
, pp. 521-542
-
-
Dudler, R.1
-
38
-
-
84879529976
-
The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic acid mediated plant defence
-
Üstün S., et al. The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic acid mediated plant defence. PLoS Pathog. 2013, 9:e1003427.
-
(2013)
PLoS Pathog.
, vol.9
-
-
Üstün, S.1
-
39
-
-
80055113099
-
The YopJ superfamily in plant-associated bacteria
-
Lewis J.D., et al. The YopJ superfamily in plant-associated bacteria. Mol. Plant Pathol. 2011, 12:928-937.
-
(2011)
Mol. Plant Pathol.
, vol.12
, pp. 928-937
-
-
Lewis, J.D.1
-
40
-
-
84856373151
-
Proteasome inhibitors: an expanding army attacking a unique target
-
Kisselev A.F., et al. Proteasome inhibitors: an expanding army attacking a unique target. Chem. Biol. 2012, 19:99-115.
-
(2012)
Chem. Biol.
, vol.19
, pp. 99-115
-
-
Kisselev, A.F.1
-
41
-
-
2642616988
-
Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice
-
Wäspi U., et al. Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice. Mol. Plant Microbe Interact. 1998, 11:727-733.
-
(1998)
Mol. Plant Microbe Interact.
, vol.11
, pp. 727-733
-
-
Wäspi, U.1
-
42
-
-
0032952478
-
Identification and structure of a family of syringolin variants: unusual cyclic peptides from Pseudomonas syringae pv. syringae that elicit defense responses in rice
-
Wäspi U., et al. Identification and structure of a family of syringolin variants: unusual cyclic peptides from Pseudomonas syringae pv. syringae that elicit defense responses in rice. Microbiol. Res. 1999, 154:89-93.
-
(1999)
Microbiol. Res.
, vol.154
, pp. 89-93
-
-
Wäspi, U.1
-
43
-
-
84865541446
-
Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E. coli through Red/ET recombineering
-
Bian X.Y., et al. Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E. coli through Red/ET recombineering. Chembiochem 2012, 13:1946-1952.
-
(2012)
Chembiochem
, vol.13
, pp. 1946-1952
-
-
Bian, X.Y.1
-
44
-
-
42049085712
-
A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism
-
Groll M., et al. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 2008, 452:755-758.
-
(2008)
Nature
, vol.452
, pp. 755-758
-
-
Groll, M.1
-
45
-
-
78650979021
-
Proteasome activity imaging and profiling characterizes bacterial effector syringolin A
-
Kolodziejek I., et al. Proteasome activity imaging and profiling characterizes bacterial effector syringolin A. Plant Physiol. 2011, 155:477-489.
-
(2011)
Plant Physiol.
, vol.155
, pp. 477-489
-
-
Kolodziejek, I.1
-
46
-
-
84885643778
-
Arabidopsis YELLOW STRIPE LIKE7 and 8 transporters mediate uptake of Pseudomonas virulence factor syringolin A into plant cells
-
Schelbert Hofstetter S., et al. Arabidopsis YELLOW STRIPE LIKE7 and 8 transporters mediate uptake of Pseudomonas virulence factor syringolin A into plant cells. Mol. Plant Microbe Interact. 2013, 26:1302-1311.
-
(2013)
Mol. Plant Microbe Interact.
, vol.26
, pp. 1302-1311
-
-
Schelbert Hofstetter, S.1
-
47
-
-
79957480610
-
The oligopeptide transporters: a small gene family with a diverse group of substrates and functions?
-
Lubkowitz M. The oligopeptide transporters: a small gene family with a diverse group of substrates and functions?. Mol. Plant 2011, 4:407-415.
-
(2011)
Mol. Plant
, vol.4
, pp. 407-415
-
-
Lubkowitz, M.1
-
48
-
-
77952671749
-
Syrbactin class proteasome inhibitor-induced apoptosis and autophagy occurs in association with p53 accumulation and Akt/PKB activation in neuroblastoma
-
Archer C.R., et al. Syrbactin class proteasome inhibitor-induced apoptosis and autophagy occurs in association with p53 accumulation and Akt/PKB activation in neuroblastoma. Biochem. Pharmacol. 2010, 80:170-178.
-
(2010)
Biochem. Pharmacol.
, vol.80
, pp. 170-178
-
-
Archer, C.R.1
-
49
-
-
80054996323
-
The chemistry and biology of syringolins, glidobactins and cepafungins (syrbactins)
-
Krahn D., et al. The chemistry and biology of syringolins, glidobactins and cepafungins (syrbactins). Nat. Prod. Rep. 2011, 28:1854-1867.
-
(2011)
Nat. Prod. Rep.
, vol.28
, pp. 1854-1867
-
-
Krahn, D.1
-
50
-
-
33748129962
-
Plant stomata function in innate immunity against bacterial invasion
-
Melotto M., et al. Plant stomata function in innate immunity against bacterial invasion. Cell 2006, 126:969-980.
-
(2006)
Cell
, vol.126
, pp. 969-980
-
-
Melotto, M.1
-
51
-
-
77954324250
-
A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis
-
Zeng W.Q., He S.Y. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol. 2010, 153:1188-1198.
-
(2010)
Plant Physiol.
, vol.153
, pp. 1188-1198
-
-
Zeng, W.Q.1
He, S.Y.2
-
52
-
-
77956740749
-
Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition
-
Schellenberg B., et al. Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition. Mol. Plant Microbe Interact. 2010, 23:1287-1293.
-
(2010)
Mol. Plant Microbe Interact.
, vol.23
, pp. 1287-1293
-
-
Schellenberg, B.1
-
53
-
-
84876004778
-
Pseudomonas syringae pv. syringae uses proteasome inhibitor syringolin A to colonize from wound infection sites
-
Misas-Villamil J.C., et al. Pseudomonas syringae pv. syringae uses proteasome inhibitor syringolin A to colonize from wound infection sites. PLoS Pathog. 2013, 9:e1003281.
-
(2013)
PLoS Pathog.
, vol.9
-
-
Misas-Villamil, J.C.1
-
54
-
-
1642567934
-
Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301D-R
-
Amrein H., et al. Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301D-R. Mol. Plant Microbe Interact. 2004, 17:90-97.
-
(2004)
Mol. Plant Microbe Interact.
, vol.17
, pp. 90-97
-
-
Amrein, H.1
-
55
-
-
84864662383
-
Regulation of biosynthesis of syringolin A, a Pseudomonas syringae virulence factor targeting the host proteasome
-
Ramel C., et al. Regulation of biosynthesis of syringolin A, a Pseudomonas syringae virulence factor targeting the host proteasome. Mol. Plant Microbe Interact. 2012, 25:1198-1208.
-
(2012)
Mol. Plant Microbe Interact.
, vol.25
, pp. 1198-1208
-
-
Ramel, C.1
-
56
-
-
73249136918
-
SylC catalyzes ureido-bond formation during biosynthesis of the proteasome inhibitor syringolin A
-
Imker H.J., et al. SylC catalyzes ureido-bond formation during biosynthesis of the proteasome inhibitor syringolin A. J. Am. Chem. Soc. 2009, 131:18263-18265.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 18263-18265
-
-
Imker, H.J.1
-
57
-
-
72449126570
-
Biosynthesis of the proteasome inhibitor syringolin A: the ureido group joining two amino acids originates from bicarbonate
-
Ramel C., et al. Biosynthesis of the proteasome inhibitor syringolin A: the ureido group joining two amino acids originates from bicarbonate. BMC Biochem. 2009, 10:26.
-
(2009)
BMC Biochem.
, vol.10
, pp. 26
-
-
Ramel, C.1
-
58
-
-
80052239358
-
Enzymatic timing and tailoring of macrolactamization in syringolin biosynthesis
-
Wuest W.M., et al. Enzymatic timing and tailoring of macrolactamization in syringolin biosynthesis. Org. Lett. 2011, 13:4518-4521.
-
(2011)
Org. Lett.
, vol.13
, pp. 4518-4521
-
-
Wuest, W.M.1
-
59
-
-
79960944810
-
Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates
-
Baltrus D.A., et al. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog. 2011, 7:e1002132.
-
(2011)
PLoS Pathog.
, vol.7
-
-
Baltrus, D.A.1
-
60
-
-
84881064432
-
Non contiguous-finished genome sequence of Pseudomonas syringae pathovar syringae strain B64 isolated from wheat
-
Dudnik A., Dudler R. Non contiguous-finished genome sequence of Pseudomonas syringae pathovar syringae strain B64 isolated from wheat. Stand. Genomic Sci. 2013, 8:420-429.
-
(2013)
Stand. Genomic Sci.
, vol.8
, pp. 420-429
-
-
Dudnik, A.1
Dudler, R.2
-
62
-
-
0023757499
-
Glidobactins A, B and C, new antitumor antibiotics. II. Structure elucidation
-
Oka M., et al. Glidobactins A, B and C, new antitumor antibiotics. II. Structure elucidation. J. Antibiot. (Tokyo) 1988, 41:1338-1350.
-
(1988)
J. Antibiot. (Tokyo)
, vol.41
, pp. 1338-1350
-
-
Oka, M.1
-
63
-
-
0025291498
-
Structures of cepafungins I, II and III
-
Terui Y., et al. Structures of cepafungins I, II and III. J. Antibiot. (Tokyo) 1990, 43:788-795.
-
(1990)
J. Antibiot. (Tokyo)
, vol.43
, pp. 788-795
-
-
Terui, Y.1
-
64
-
-
34250212125
-
Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium
-
Schellenberg B., et al. Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium. Environ. Microbiol. 2007, 9:1640-1650.
-
(2007)
Environ. Microbiol.
, vol.9
, pp. 1640-1650
-
-
Schellenberg, B.1
-
65
-
-
78049413334
-
N-Acylation during glidobactin biosynthesis by the tridomain nonribosomal peptide synthetase module GlbF
-
Imker H.J., et al. N-Acylation during glidobactin biosynthesis by the tridomain nonribosomal peptide synthetase module GlbF. Chem. Biol. 2010, 17:1077-1083.
-
(2010)
Chem. Biol.
, vol.17
, pp. 1077-1083
-
-
Imker, H.J.1
-
66
-
-
84872606912
-
Heterologous expression of a Photorhabdus luminescens syrbactin-like gene cluster results in production of the potent proteasome inhibitor glidobactin A
-
Dudnik A., et al. Heterologous expression of a Photorhabdus luminescens syrbactin-like gene cluster results in production of the potent proteasome inhibitor glidobactin A. Microbiol. Res. 2013, 168:73-76.
-
(2013)
Microbiol. Res.
, vol.168
, pp. 73-76
-
-
Dudnik, A.1
-
67
-
-
84868578166
-
One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor
-
Stein M.L., et al. One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:18367-18371.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 18367-18371
-
-
Stein, M.L.1
-
68
-
-
84870206740
-
Production of cytotoxic glidobactins/luminmycins by Photorhabdus asymbiotica in liquid media and live crickets
-
Theodore C.M., et al. Production of cytotoxic glidobactins/luminmycins by Photorhabdus asymbiotica in liquid media and live crickets. J. Nat. Prod. 2012, 75:2007-2011.
-
(2012)
J. Nat. Prod.
, vol.75
, pp. 2007-2011
-
-
Theodore, C.M.1
-
69
-
-
33750478011
-
Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites
-
Michel K., et al. Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites. Plant Mol. Biol. 2006, 62:561-578.
-
(2006)
Plant Mol. Biol.
, vol.62
, pp. 561-578
-
-
Michel, K.1
-
70
-
-
33748631825
-
Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms
-
Fischbach M.A., Walsh C.T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 2006, 106:3468-3496.
-
(2006)
Chem. Rev.
, vol.106
, pp. 3468-3496
-
-
Fischbach, M.A.1
Walsh, C.T.2
-
72
-
-
0033179468
-
The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases
-
Stachelhaus T., et al. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 1999, 6:493-505.
-
(1999)
Chem. Biol.
, vol.6
, pp. 493-505
-
-
Stachelhaus, T.1
-
73
-
-
0032829915
-
Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis
-
Keating T.A., Walsh C.T. Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr. Opin. Chem. Biol. 1999, 3:598-606.
-
(1999)
Curr. Opin. Chem. Biol.
, vol.3
, pp. 598-606
-
-
Keating, T.A.1
Walsh, C.T.2
-
74
-
-
25144466838
-
Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae
-
Hwang M.S.H., et al. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl. Environ. Microbiol. 2005, 71:5182-5191.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 5182-5191
-
-
Hwang, M.S.H.1
|