메뉴 건너뛰기




Volumn 22, Issue 1, 2014, Pages 28-35

The role of bacterial phytotoxins in inhibiting the eukaryotic proteasome

Author keywords

Proteasome inhibitor; Syrbactin; Syringolin; Type III effectors; Virulence factor

Indexed keywords

26S PROTEASOME; BACTERIAL TOXIN; GLIDOBACTIN A; PROTEASOME; SYRBACTIN; SYRINGOLIN A; UBIQUITIN; UNCLASSIFIED DRUG; XOPJ EFFECTOR;

EID: 84891371972     PISSN: 0966842X     EISSN: 18784380     Source Type: Journal    
DOI: 10.1016/j.tim.2013.10.010     Document Type: Review
Times cited : (13)

References (74)
  • 1
    • 84865836123 scopus 로고    scopus 로고
    • Ubiquitin-mediated control of plant homone signaling
    • Kelley D.R., Estelle M. Ubiquitin-mediated control of plant homone signaling. Plant Physiol. 2012, 160:47-55.
    • (2012) Plant Physiol. , vol.160 , pp. 47-55
    • Kelley, D.R.1    Estelle, M.2
  • 2
    • 84865551586 scopus 로고    scopus 로고
    • The ubiquitin-proteasome system: central modifier of plant signalling
    • Sadanandom A., et al. The ubiquitin-proteasome system: central modifier of plant signalling. New Phytol. 2012, 196:13-28.
    • (2012) New Phytol. , vol.196 , pp. 13-28
    • Sadanandom, A.1
  • 3
    • 3242665372 scopus 로고    scopus 로고
    • The ubiquitin 26S proteasome proteolytic pathway
    • Smalle J., Vierstra R.D. The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 2004, 55:555-590.
    • (2004) Annu. Rev. Plant Biol. , vol.55 , pp. 555-590
    • Smalle, J.1    Vierstra, R.D.2
  • 4
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78:477-513.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 5
    • 84856233599 scopus 로고    scopus 로고
    • Comparison of phytohormone signaling mechanisms
    • Shan X.Y., et al. Comparison of phytohormone signaling mechanisms. Curr. Opin. Plant Biol. 2012, 15:84-91.
    • (2012) Curr. Opin. Plant Biol. , vol.15 , pp. 84-91
    • Shan, X.Y.1
  • 6
    • 84860672297 scopus 로고    scopus 로고
    • Evolution of jasmonate and salicylate signal crosstalk
    • Thaler J.S., et al. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012, 17:260-270.
    • (2012) Trends Plant Sci. , vol.17 , pp. 260-270
    • Thaler, J.S.1
  • 7
    • 65849096454 scopus 로고    scopus 로고
    • Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity
    • Spoel S.H., et al. Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity. Cell 2009, 137:860-872.
    • (2009) Cell , vol.137 , pp. 860-872
    • Spoel, S.H.1
  • 8
    • 68849129110 scopus 로고    scopus 로고
    • Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module
    • Chini A., et al. Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. FEBS J. 2009, 276:4682-4692.
    • (2009) FEBS J. , vol.276 , pp. 4682-4692
    • Chini, A.1
  • 9
    • 84865846822 scopus 로고    scopus 로고
    • Hormonal modulation of plant immunity
    • Pieterse C.M.J., et al. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012, 28:489-521.
    • (2012) Annu. Rev. Cell Dev. Biol. , vol.28 , pp. 489-521
    • Pieterse, C.M.J.1
  • 10
    • 84865847703 scopus 로고    scopus 로고
    • Ubiquitination during plant immune signaling
    • Marino D., et al. Ubiquitination during plant immune signaling. Plant Physiol. 2012, 160:15-27.
    • (2012) Plant Physiol. , vol.160 , pp. 15-27
    • Marino, D.1
  • 11
    • 75249101443 scopus 로고    scopus 로고
    • Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases
    • Hicks S.W., Galan J.E. Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases. Curr. Opin. Microbiol. 2010, 13:41-46.
    • (2010) Curr. Opin. Microbiol. , vol.13 , pp. 41-46
    • Hicks, S.W.1    Galan, J.E.2
  • 12
    • 33751100626 scopus 로고    scopus 로고
    • The plant immune system
    • Jones J.D.G., Dangl J.L. The plant immune system. Nature 2006, 444:323-329.
    • (2006) Nature , vol.444 , pp. 323-329
    • Jones, J.D.G.1    Dangl, J.L.2
  • 13
    • 66249135697 scopus 로고    scopus 로고
    • A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors
    • Boller T., Felix G. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 2009, 60:379-406.
    • (2009) Annu. Rev. Plant Biol. , vol.60 , pp. 379-406
    • Boller, T.1    Felix, G.2
  • 14
    • 84891373181 scopus 로고    scopus 로고
    • Toll-like receptors
    • Academic Press, J.L. William, M.D. Lane (Eds.)
    • Kumar H., et al. Toll-like receptors. Encyclopedia of Biological Chemistry 2013, 396-401. Academic Press. J.L. William, M.D. Lane (Eds.).
    • (2013) Encyclopedia of Biological Chemistry , pp. 396-401
    • Kumar, H.1
  • 15
    • 84864503694 scopus 로고    scopus 로고
    • Plant-bacterial pathogen interactions mediated by type III effectors
    • Feng F., Zhou J.M. Plant-bacterial pathogen interactions mediated by type III effectors. Curr. Opin. Plant Biol. 2012, 15:469-476.
    • (2012) Curr. Opin. Plant Biol. , vol.15 , pp. 469-476
    • Feng, F.1    Zhou, J.M.2
  • 16
    • 84859268600 scopus 로고    scopus 로고
    • Pseudomonas syringae type III effector repertoires: last words in endless arguments
    • Lindeberg M., et al. Pseudomonas syringae type III effector repertoires: last words in endless arguments. Trends Microbiol. 2012, 20:199-208.
    • (2012) Trends Microbiol. , vol.20 , pp. 199-208
    • Lindeberg, M.1
  • 17
    • 79960210750 scopus 로고    scopus 로고
    • Programmed cell death in the plant immune system
    • Coll N.S., et al. Programmed cell death in the plant immune system. Cell Death Differ. 2011, 18:1247-1256.
    • (2011) Cell Death Differ. , vol.18 , pp. 1247-1256
    • Coll, N.S.1
  • 19
    • 33644527550 scopus 로고    scopus 로고
    • Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity
    • Abramovitch R.B., et al. Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:2851-2856.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 2851-2856
    • Abramovitch, R.B.1
  • 20
    • 30844458212 scopus 로고    scopus 로고
    • A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase
    • Janjusevic R., et al. A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 2006, 311:222-226.
    • (2006) Science , vol.311 , pp. 222-226
    • Janjusevic, R.1
  • 21
    • 33745822814 scopus 로고    scopus 로고
    • Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis
    • de Torres M., et al. Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J. 2006, 47:368-382.
    • (2006) Plant J. , vol.47 , pp. 368-382
    • de Torres, M.1
  • 22
    • 34447542796 scopus 로고    scopus 로고
    • A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity
    • Rosebrock T.R., et al. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity. Nature 2007, 448:370-374.
    • (2007) Nature , vol.448 , pp. 370-374
    • Rosebrock, T.R.1
  • 23
    • 61449086250 scopus 로고    scopus 로고
    • AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants
    • Gimenez-Ibanez S., et al. AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr. Biol. 2009, 19:423-429.
    • (2009) Curr. Biol. , vol.19 , pp. 423-429
    • Gimenez-Ibanez, S.1
  • 24
    • 84875074459 scopus 로고    scopus 로고
    • A pathogen type III effector with a novel E3 ubiquitin ligase architecture
    • Singer A.U., et al. A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog. 2013, 9:e1003121.
    • (2013) PLoS Pathog. , vol.9
    • Singer, A.U.1
  • 25
    • 33746002275 scopus 로고    scopus 로고
    • A bacterial virulence protein suppresses host innate immunity to cause plant disease
    • Nomura K., et al. A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 2006, 313:220-223.
    • (2006) Science , vol.313 , pp. 220-223
    • Nomura, K.1
  • 26
    • 3142521716 scopus 로고    scopus 로고
    • Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system
    • Cunnac S., et al. Inventory and functional analysis of the large Hrp regulon in Ralstonia solanacearum: identification of novel effector proteins translocated to plant host cells through the type III secretion system. Mol. Microbiol. 2004, 53:115-128.
    • (2004) Mol. Microbiol. , vol.53 , pp. 115-128
    • Cunnac, S.1
  • 27
    • 81055156137 scopus 로고    scopus 로고
    • Functional diversification of the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different plant hosts
    • Remigi P., et al. Functional diversification of the GALA type III effector family contributes to Ralstonia solanacearum adaptation on different plant hosts. New Phytol. 2011, 192:976-987.
    • (2011) New Phytol. , vol.192 , pp. 976-987
    • Remigi, P.1
  • 28
    • 33749257294 scopus 로고    scopus 로고
    • Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants
    • Angot A., et al. Ralstonia solanacearum requires F-box-like domain-containing type III effectors to promote disease on several host plants. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:14620-14625.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 14620-14625
    • Angot, A.1
  • 29
    • 77954670354 scopus 로고    scopus 로고
    • NleG type 3 effectors from enterohaemorrhagic Escherichia coli are U-box E3 ubiquitin ligases
    • Wu B., et al. NleG type 3 effectors from enterohaemorrhagic Escherichia coli are U-box E3 ubiquitin ligases. PLoS Pathog. 2010, 6:e1000960.
    • (2010) PLoS Pathog. , vol.6
    • Wu, B.1
  • 30
    • 79955604109 scopus 로고    scopus 로고
    • The EHEC type III effector NleL is an E3 ubiquitin ligase that modulates pedestal formation
    • Piscatelli H., et al. The EHEC type III effector NleL is an E3 ubiquitin ligase that modulates pedestal formation. PLoS ONE 2011, 6:e19331.
    • (2011) PLoS ONE , vol.6
    • Piscatelli, H.1
  • 31
    • 57149105701 scopus 로고    scopus 로고
    • Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases
    • Singer A.U., et al. Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat. Struct. Mol. Biol. 2008, 15:1293-1301.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 1293-1301
    • Singer, A.U.1
  • 32
    • 33947727977 scopus 로고    scopus 로고
    • Type III secretion effectors of the IpaH family are E3 ubiquitin ligases
    • Rohde J.R., et al. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 2007, 1:77-83.
    • (2007) Cell Host Microbe , vol.1 , pp. 77-83
    • Rohde, J.R.1
  • 33
    • 63849280748 scopus 로고    scopus 로고
    • A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases
    • Quezada C.M., et al. A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4864-4869.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 4864-4869
    • Quezada, C.M.1
  • 34
    • 37849010910 scopus 로고    scopus 로고
    • Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase
    • Diao J., et al. Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. Nat. Struct. Mol. Biol. 2008, 15:65-70.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 65-70
    • Diao, J.1
  • 35
    • 77953097908 scopus 로고    scopus 로고
    • Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1
    • Bos J.I.B., et al. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:9909-9914.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 9909-9914
    • Bos, J.I.B.1
  • 36
    • 79954577688 scopus 로고    scopus 로고
    • CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a
    • Gilroy E.M., et al. CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. New Phytol. 2011, 190:653-666.
    • (2011) New Phytol. , vol.190 , pp. 653-666
    • Gilroy, E.M.1
  • 37
    • 84881436954 scopus 로고    scopus 로고
    • Manipulation of host proteasomes as a virulence mechanism of plant pathogens
    • Dudler R. Manipulation of host proteasomes as a virulence mechanism of plant pathogens. Annu. Rev. Phytopathol. 2013, 51:521-542.
    • (2013) Annu. Rev. Phytopathol. , vol.51 , pp. 521-542
    • Dudler, R.1
  • 38
    • 84879529976 scopus 로고    scopus 로고
    • The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic acid mediated plant defence
    • Üstün S., et al. The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic acid mediated plant defence. PLoS Pathog. 2013, 9:e1003427.
    • (2013) PLoS Pathog. , vol.9
    • Üstün, S.1
  • 39
    • 80055113099 scopus 로고    scopus 로고
    • The YopJ superfamily in plant-associated bacteria
    • Lewis J.D., et al. The YopJ superfamily in plant-associated bacteria. Mol. Plant Pathol. 2011, 12:928-937.
    • (2011) Mol. Plant Pathol. , vol.12 , pp. 928-937
    • Lewis, J.D.1
  • 40
    • 84856373151 scopus 로고    scopus 로고
    • Proteasome inhibitors: an expanding army attacking a unique target
    • Kisselev A.F., et al. Proteasome inhibitors: an expanding army attacking a unique target. Chem. Biol. 2012, 19:99-115.
    • (2012) Chem. Biol. , vol.19 , pp. 99-115
    • Kisselev, A.F.1
  • 41
    • 2642616988 scopus 로고    scopus 로고
    • Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice
    • Wäspi U., et al. Syringolin, a novel peptide elicitor from Pseudomonas syringae pv. syringae that induces resistance to Pyricularia oryzae in rice. Mol. Plant Microbe Interact. 1998, 11:727-733.
    • (1998) Mol. Plant Microbe Interact. , vol.11 , pp. 727-733
    • Wäspi, U.1
  • 42
    • 0032952478 scopus 로고    scopus 로고
    • Identification and structure of a family of syringolin variants: unusual cyclic peptides from Pseudomonas syringae pv. syringae that elicit defense responses in rice
    • Wäspi U., et al. Identification and structure of a family of syringolin variants: unusual cyclic peptides from Pseudomonas syringae pv. syringae that elicit defense responses in rice. Microbiol. Res. 1999, 154:89-93.
    • (1999) Microbiol. Res. , vol.154 , pp. 89-93
    • Wäspi, U.1
  • 43
    • 84865541446 scopus 로고    scopus 로고
    • Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E. coli through Red/ET recombineering
    • Bian X.Y., et al. Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E. coli through Red/ET recombineering. Chembiochem 2012, 13:1946-1952.
    • (2012) Chembiochem , vol.13 , pp. 1946-1952
    • Bian, X.Y.1
  • 44
    • 42049085712 scopus 로고    scopus 로고
    • A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism
    • Groll M., et al. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 2008, 452:755-758.
    • (2008) Nature , vol.452 , pp. 755-758
    • Groll, M.1
  • 45
    • 78650979021 scopus 로고    scopus 로고
    • Proteasome activity imaging and profiling characterizes bacterial effector syringolin A
    • Kolodziejek I., et al. Proteasome activity imaging and profiling characterizes bacterial effector syringolin A. Plant Physiol. 2011, 155:477-489.
    • (2011) Plant Physiol. , vol.155 , pp. 477-489
    • Kolodziejek, I.1
  • 46
    • 84885643778 scopus 로고    scopus 로고
    • Arabidopsis YELLOW STRIPE LIKE7 and 8 transporters mediate uptake of Pseudomonas virulence factor syringolin A into plant cells
    • Schelbert Hofstetter S., et al. Arabidopsis YELLOW STRIPE LIKE7 and 8 transporters mediate uptake of Pseudomonas virulence factor syringolin A into plant cells. Mol. Plant Microbe Interact. 2013, 26:1302-1311.
    • (2013) Mol. Plant Microbe Interact. , vol.26 , pp. 1302-1311
    • Schelbert Hofstetter, S.1
  • 47
    • 79957480610 scopus 로고    scopus 로고
    • The oligopeptide transporters: a small gene family with a diverse group of substrates and functions?
    • Lubkowitz M. The oligopeptide transporters: a small gene family with a diverse group of substrates and functions?. Mol. Plant 2011, 4:407-415.
    • (2011) Mol. Plant , vol.4 , pp. 407-415
    • Lubkowitz, M.1
  • 48
    • 77952671749 scopus 로고    scopus 로고
    • Syrbactin class proteasome inhibitor-induced apoptosis and autophagy occurs in association with p53 accumulation and Akt/PKB activation in neuroblastoma
    • Archer C.R., et al. Syrbactin class proteasome inhibitor-induced apoptosis and autophagy occurs in association with p53 accumulation and Akt/PKB activation in neuroblastoma. Biochem. Pharmacol. 2010, 80:170-178.
    • (2010) Biochem. Pharmacol. , vol.80 , pp. 170-178
    • Archer, C.R.1
  • 49
    • 80054996323 scopus 로고    scopus 로고
    • The chemistry and biology of syringolins, glidobactins and cepafungins (syrbactins)
    • Krahn D., et al. The chemistry and biology of syringolins, glidobactins and cepafungins (syrbactins). Nat. Prod. Rep. 2011, 28:1854-1867.
    • (2011) Nat. Prod. Rep. , vol.28 , pp. 1854-1867
    • Krahn, D.1
  • 50
    • 33748129962 scopus 로고    scopus 로고
    • Plant stomata function in innate immunity against bacterial invasion
    • Melotto M., et al. Plant stomata function in innate immunity against bacterial invasion. Cell 2006, 126:969-980.
    • (2006) Cell , vol.126 , pp. 969-980
    • Melotto, M.1
  • 51
    • 77954324250 scopus 로고    scopus 로고
    • A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis
    • Zeng W.Q., He S.Y. A prominent role of the flagellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol. 2010, 153:1188-1198.
    • (2010) Plant Physiol. , vol.153 , pp. 1188-1198
    • Zeng, W.Q.1    He, S.Y.2
  • 52
    • 77956740749 scopus 로고    scopus 로고
    • Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition
    • Schellenberg B., et al. Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition. Mol. Plant Microbe Interact. 2010, 23:1287-1293.
    • (2010) Mol. Plant Microbe Interact. , vol.23 , pp. 1287-1293
    • Schellenberg, B.1
  • 53
    • 84876004778 scopus 로고    scopus 로고
    • Pseudomonas syringae pv. syringae uses proteasome inhibitor syringolin A to colonize from wound infection sites
    • Misas-Villamil J.C., et al. Pseudomonas syringae pv. syringae uses proteasome inhibitor syringolin A to colonize from wound infection sites. PLoS Pathog. 2013, 9:e1003281.
    • (2013) PLoS Pathog. , vol.9
    • Misas-Villamil, J.C.1
  • 54
    • 1642567934 scopus 로고    scopus 로고
    • Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301D-R
    • Amrein H., et al. Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301D-R. Mol. Plant Microbe Interact. 2004, 17:90-97.
    • (2004) Mol. Plant Microbe Interact. , vol.17 , pp. 90-97
    • Amrein, H.1
  • 55
    • 84864662383 scopus 로고    scopus 로고
    • Regulation of biosynthesis of syringolin A, a Pseudomonas syringae virulence factor targeting the host proteasome
    • Ramel C., et al. Regulation of biosynthesis of syringolin A, a Pseudomonas syringae virulence factor targeting the host proteasome. Mol. Plant Microbe Interact. 2012, 25:1198-1208.
    • (2012) Mol. Plant Microbe Interact. , vol.25 , pp. 1198-1208
    • Ramel, C.1
  • 56
    • 73249136918 scopus 로고    scopus 로고
    • SylC catalyzes ureido-bond formation during biosynthesis of the proteasome inhibitor syringolin A
    • Imker H.J., et al. SylC catalyzes ureido-bond formation during biosynthesis of the proteasome inhibitor syringolin A. J. Am. Chem. Soc. 2009, 131:18263-18265.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 18263-18265
    • Imker, H.J.1
  • 57
    • 72449126570 scopus 로고    scopus 로고
    • Biosynthesis of the proteasome inhibitor syringolin A: the ureido group joining two amino acids originates from bicarbonate
    • Ramel C., et al. Biosynthesis of the proteasome inhibitor syringolin A: the ureido group joining two amino acids originates from bicarbonate. BMC Biochem. 2009, 10:26.
    • (2009) BMC Biochem. , vol.10 , pp. 26
    • Ramel, C.1
  • 58
    • 80052239358 scopus 로고    scopus 로고
    • Enzymatic timing and tailoring of macrolactamization in syringolin biosynthesis
    • Wuest W.M., et al. Enzymatic timing and tailoring of macrolactamization in syringolin biosynthesis. Org. Lett. 2011, 13:4518-4521.
    • (2011) Org. Lett. , vol.13 , pp. 4518-4521
    • Wuest, W.M.1
  • 59
    • 79960944810 scopus 로고    scopus 로고
    • Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates
    • Baltrus D.A., et al. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 Pseudomonas syringae isolates. PLoS Pathog. 2011, 7:e1002132.
    • (2011) PLoS Pathog. , vol.7
    • Baltrus, D.A.1
  • 60
    • 84881064432 scopus 로고    scopus 로고
    • Non contiguous-finished genome sequence of Pseudomonas syringae pathovar syringae strain B64 isolated from wheat
    • Dudnik A., Dudler R. Non contiguous-finished genome sequence of Pseudomonas syringae pathovar syringae strain B64 isolated from wheat. Stand. Genomic Sci. 2013, 8:420-429.
    • (2013) Stand. Genomic Sci. , vol.8 , pp. 420-429
    • Dudnik, A.1    Dudler, R.2
  • 62
    • 0023757499 scopus 로고
    • Glidobactins A, B and C, new antitumor antibiotics. II. Structure elucidation
    • Oka M., et al. Glidobactins A, B and C, new antitumor antibiotics. II. Structure elucidation. J. Antibiot. (Tokyo) 1988, 41:1338-1350.
    • (1988) J. Antibiot. (Tokyo) , vol.41 , pp. 1338-1350
    • Oka, M.1
  • 63
    • 0025291498 scopus 로고
    • Structures of cepafungins I, II and III
    • Terui Y., et al. Structures of cepafungins I, II and III. J. Antibiot. (Tokyo) 1990, 43:788-795.
    • (1990) J. Antibiot. (Tokyo) , vol.43 , pp. 788-795
    • Terui, Y.1
  • 64
    • 34250212125 scopus 로고    scopus 로고
    • Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium
    • Schellenberg B., et al. Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium. Environ. Microbiol. 2007, 9:1640-1650.
    • (2007) Environ. Microbiol. , vol.9 , pp. 1640-1650
    • Schellenberg, B.1
  • 65
    • 78049413334 scopus 로고    scopus 로고
    • N-Acylation during glidobactin biosynthesis by the tridomain nonribosomal peptide synthetase module GlbF
    • Imker H.J., et al. N-Acylation during glidobactin biosynthesis by the tridomain nonribosomal peptide synthetase module GlbF. Chem. Biol. 2010, 17:1077-1083.
    • (2010) Chem. Biol. , vol.17 , pp. 1077-1083
    • Imker, H.J.1
  • 66
    • 84872606912 scopus 로고    scopus 로고
    • Heterologous expression of a Photorhabdus luminescens syrbactin-like gene cluster results in production of the potent proteasome inhibitor glidobactin A
    • Dudnik A., et al. Heterologous expression of a Photorhabdus luminescens syrbactin-like gene cluster results in production of the potent proteasome inhibitor glidobactin A. Microbiol. Res. 2013, 168:73-76.
    • (2013) Microbiol. Res. , vol.168 , pp. 73-76
    • Dudnik, A.1
  • 67
    • 84868578166 scopus 로고    scopus 로고
    • One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor
    • Stein M.L., et al. One-shot NMR analysis of microbial secretions identifies highly potent proteasome inhibitor. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:18367-18371.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 18367-18371
    • Stein, M.L.1
  • 68
    • 84870206740 scopus 로고    scopus 로고
    • Production of cytotoxic glidobactins/luminmycins by Photorhabdus asymbiotica in liquid media and live crickets
    • Theodore C.M., et al. Production of cytotoxic glidobactins/luminmycins by Photorhabdus asymbiotica in liquid media and live crickets. J. Nat. Prod. 2012, 75:2007-2011.
    • (2012) J. Nat. Prod. , vol.75 , pp. 2007-2011
    • Theodore, C.M.1
  • 69
    • 33750478011 scopus 로고    scopus 로고
    • Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites
    • Michel K., et al. Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites. Plant Mol. Biol. 2006, 62:561-578.
    • (2006) Plant Mol. Biol. , vol.62 , pp. 561-578
    • Michel, K.1
  • 70
    • 33748631825 scopus 로고    scopus 로고
    • Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms
    • Fischbach M.A., Walsh C.T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 2006, 106:3468-3496.
    • (2006) Chem. Rev. , vol.106 , pp. 3468-3496
    • Fischbach, M.A.1    Walsh, C.T.2
  • 71
  • 72
    • 0033179468 scopus 로고    scopus 로고
    • The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases
    • Stachelhaus T., et al. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 1999, 6:493-505.
    • (1999) Chem. Biol. , vol.6 , pp. 493-505
    • Stachelhaus, T.1
  • 73
    • 0032829915 scopus 로고    scopus 로고
    • Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis
    • Keating T.A., Walsh C.T. Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr. Opin. Chem. Biol. 1999, 3:598-606.
    • (1999) Curr. Opin. Chem. Biol. , vol.3 , pp. 598-606
    • Keating, T.A.1    Walsh, C.T.2
  • 74
    • 25144466838 scopus 로고    scopus 로고
    • Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae
    • Hwang M.S.H., et al. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl. Environ. Microbiol. 2005, 71:5182-5191.
    • (2005) Appl. Environ. Microbiol. , vol.71 , pp. 5182-5191
    • Hwang, M.S.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.