메뉴 건너뛰기




Volumn 23, Issue 8, 2012, Pages 1254-1268

SOMKE: Kernel density estimation over data streams by sequences of self-organizing maps

Author keywords

Kernel density estimation; Kullback Leibler divergence; probability density functions; self organized maps; stream data mining

Indexed keywords

CLUSTERING INFORMATION; EFFECTIVENESS AND EFFICIENCIES; KERNEL DENSITY ESTIMATION; KULLBACK LEIBLER DIVERGENCE; SELF-ORGANIZED MAPS; SELF-ORGANIZING MAP (SOM); STREAM DATA MINING; TIME AND SPACE COMPLEXITY;

EID: 84876922286     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2012.2201167     Document Type: Article
Times cited : (56)

References (66)
  • 1
    • 0742323983 scopus 로고    scopus 로고
    • A general framework for mining massive data stream
    • P. Domingos and G. Hulten, "A general framework for mining massive data stream," J. Comput. Graphical Statist., vol. 12, no. 4, pp. 945-949, 2003.
    • (2003) J. Comput. Graphical Statist , vol.12 , Issue.4 , pp. 945-949
    • Domingos, P.1    Hulten, G.2
  • 2
    • 33645657061 scopus 로고    scopus 로고
    • A framework for ondemand classification of evolving data streams
    • May
    • C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, "A framework for ondemand classification of evolving data streams," IEEE Trans. Knowl. Data Eng., vol. 18, no. 5, pp. 577-589, May 2006.
    • (2006) IEEE Trans. Knowl. Data Eng , vol.18 , Issue.5 , pp. 577-589
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 5
    • 80053634784 scopus 로고    scopus 로고
    • Incremental learning of concept drift in nonstationary environments
    • Oct.
    • R. Elwell and R. Polikar, "Incremental learning of concept drift in nonstationary environments," IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1517-1531, Oct. 2011.
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.10 , pp. 1517-1531
    • Elwell, R.1    Polikar, R.2
  • 7
    • 79952189551 scopus 로고    scopus 로고
    • Video time encoding machines
    • Mar.
    • A. A. Lazar and E. A. Pnevatikakis, "Video time encoding machines," IEEE Trans. Neural Netw., vol. 22, no. 3, pp. 461-473, Mar. 2011.
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.3 , pp. 461-473
    • Lazar, A.A.1    Pnevatikakis, E.A.2
  • 10
    • 0002846209 scopus 로고    scopus 로고
    • Nonparametric density and regression estimation
    • J. DiNardo and J. L. Tobias, "Nonparametric density and regression estimation," J. Economic Perspectives, vol. 15, no. 4, pp. 11-28, 2001.
    • (2001) J. Economic Perspectives , vol.15 , Issue.4 , pp. 11-28
    • Dinardo, J.1    Tobias, J.L.2
  • 11
    • 71549156238 scopus 로고    scopus 로고
    • Integration of self-organizing map (som) and kernel density estimation (kde) for network intrusion detection
    • Sep
    • Y. Cao, H. He, H. Man, and X. Shen, "Integration of self-organizing map (som) and kernel density estimation (kde) for network intrusion detection," Proc. SPIE, vol. 7480, pp. 74800N-1-74800N-12, Sep. 2009.
    • (2009) Proc. SPIE , vol.7480
    • Cao, Y.1    He, H.2    Man, H.3    Shen, X.4
  • 13
    • 70349472942 scopus 로고    scopus 로고
    • Nonparametric density estimation for multivariate bounded data
    • T. Bouezmarni and J. V. K. Rombouts, "Nonparametric density estimation for multivariate bounded data," J. Statist. Plann. Inference, vol. 140, no. 1, pp. 139-152, 2010.
    • (2010) J. Statist. Plann. Inference , vol.140 , Issue.1 , pp. 139-152
    • Bouezmarni, T.1    Rombouts, J.V.K.2
  • 14
    • 0034457677 scopus 로고    scopus 로고
    • Efficient nonparametric density estimation on the sphere with applications in fluid mechanics
    • Ö. Egecioglu and A. Srinivasan, "Efficient nonparametric density estimation on the sphere with applications in fluid mechanics," SIAM J. Scientific Comput., vol. 22, no. 1, pp. 152-176, 2000.
    • (2000) SIAM J. Scientific Comput , vol.22 , Issue.1 , pp. 152-176
    • Egecioglu, Ö.1    Srinivasan, A.2
  • 16
    • 44649117948 scopus 로고    scopus 로고
    • Cluster kernels: Resource-aware kernel density estimators over streaming data
    • Jul
    • C. Heinz and B. Seeger, "Cluster kernels: Resource-aware kernel density estimators over streaming data," IEEE Trans. Knowl. Data Eng., vol. 20, no. 7, pp. 880-893, Jul. 2008.
    • (2008) IEEE Trans. Knowl. Data Eng , vol.20 , Issue.7 , pp. 880-893
    • Heinz, C.1    Seeger, B.2
  • 18
    • 0035272084 scopus 로고    scopus 로고
    • Self-organizing mixture networks for probability density estimation
    • Mar
    • H. Yin and N. M. Allinson, "Self-organizing mixture networks for probability density estimation," IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 405-411, Mar. 2001.
    • (2001) IEEE Trans. Neural Netw , vol.12 , Issue.2 , pp. 405-411
    • Yin, H.1    Allinson, N.M.2
  • 19
    • 0442312138 scopus 로고    scopus 로고
    • Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking
    • Nov
    • A. Elgammal, R. Duraiswami, and L. S. Davis, "Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking," IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 11, pp. 1499-1504, Nov. 2003.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell , vol.25 , Issue.11 , pp. 1499-1504
    • Elgammal, A.1    Duraiswami, R.2    Davis, L.S.3
  • 20
    • 0345391839 scopus 로고    scopus 로고
    • Efficient on-line nonparametric kernel density estimation
    • C. Lambert, S. Harrington, C. Harvey, and A. Glodjo, "Efficient on-line nonparametric kernel density estimation," Algorithmica, vol. 25, no. 1, pp. 37-57, 1999.
    • (1999) Algorithmica , vol.25 , Issue.1 , pp. 37-57
    • Lambert, C.1    Harrington, S.2    Harvey, C.3    Glodjo, A.4
  • 22
    • 69449085185 scopus 로고    scopus 로고
    • Nonparametric density estimation of streaming data using orthogonal series
    • K. A. Caudle and E. Wegman, "Nonparametric density estimation of streaming data using orthogonal series," Comput. Statist. Data Anal., vol. 53, no. 12, pp. 3980-3986, 2009.
    • (2009) Comput. Statist. Data Anal , vol.53 , Issue.12 , pp. 3980-3986
    • Caudle, K.A.1    Wegman, E.2
  • 24
    • 44649196270 scopus 로고    scopus 로고
    • Toward kernel density estimation over streaming Data
    • C. Heinz and B. Seeger, "Toward kernel density estimation over streaming Data," in Proc. Int. Conf. Manage. Data, 2006, pp. 1-12.
    • (2006) Proc. Int. Conf. Manage. Data , pp. 1-12
    • Heinz, C.1    Seeger, B.2
  • 25
    • 0025489075 scopus 로고
    • The self-organizing map
    • Sep
    • T. Kohonen, "The self-organizing map," Proc. IEEE, vol. 78, no. 9, pp. 1464-1480, Sep. 1990.
    • (1990) Proc IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 26
    • 0345404396 scopus 로고    scopus 로고
    • The self-organizing map
    • New York: Elsevier
    • T. Kohonen, "The self-organizing map," Neurocomputing. New York: Elsevier, 1998.
    • (1998) Neurocomputing
    • Kohonen, T.1
  • 28
    • 40549111339 scopus 로고    scopus 로고
    • Ranked centroid projection: A data visualization approach with self-organizing maps
    • Feb
    • G. G. Yen and Z. Wu, "Ranked centroid projection: A data visualization approach with self-organizing maps," IEEE Trans. Neural Netw., vol. 19, no. 2, pp. 245-259, Feb. 2008.
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.2 , pp. 245-259
    • Yen, G.G.1    Wu, Z.2
  • 30
    • 0742303646 scopus 로고    scopus 로고
    • Predictive self-organizing map for vector quantization of migratory signals and its application to mobile communications
    • Nov
    • A. Hirose and T. Nagashima, "Predictive self-organizing map for vector quantization of migratory signals and its application to mobile communications," IEEE Trans. Neural Netw., vol. 14, no. 6, pp. 1532-1540, Nov. 2003.
    • (2003) IEEE Trans. Neural Netw , vol.14 , Issue.6 , pp. 1532-1540
    • Hirose, A.1    Nagashima, T.2
  • 31
    • 67349252614 scopus 로고    scopus 로고
    • Model-based clustering by probabilistic self-organizing maps
    • Mar
    • S. Cheng, H. Fu, and H. Wang, "Model-based clustering by probabilistic self-organizing maps," IEEE Trans. Neural Netw., vol. 20, no. 5, pp. 805-826, Mar. 2009.
    • (2009) IEEE Trans. Neural Netw , vol.20 , Issue.5 , pp. 805-826
    • Cheng, S.1    Fu, H.2    Wang, H.3
  • 32
    • 0027187261 scopus 로고
    • The temporal kohonen map
    • G. J. Chappell and J. G. Taylor, "The temporal kohonen map," Neural Netw., vol. 6, no. 3, pp. 441-445, 1993.
    • (1993) Neural Netw , vol.6 , Issue.3 , pp. 441-445
    • Chappell, G.J.1    Taylor, J.G.2
  • 34
    • 0036790884 scopus 로고    scopus 로고
    • Recursive self-organizing maps
    • T. Voegtlin, "Recursive self-organizing maps," Neural Netw., vol. 15, nos. 8-9, pp. 979-991, 2002.
    • (2002) Neural Netw , vol.15 , Issue.8-9 , pp. 979-991
    • Voegtlin, T.1
  • 35
    • 69049106545 scopus 로고    scopus 로고
    • Incremental unsupervised time series analysis using merge growing neural gas
    • J. C. Principe and R. Miikkulainen, Eds. Heidelberg, Germany: Springer-Verlag
    • A. Andreakis, N. V. Hoyningen-Huene, and M. Beetz, "Incremental unsupervised time series analysis using merge growing neural gas," in Advances in Self-Organizing Maps (Lecture Notes on Computer Sciences), vol. 5629, J. C. Principe and R. Miikkulainen, Eds. Heidelberg, Germany: Springer-Verlag, 2009, pp. 10-18.
    • (2009) Advances in Self-Organizing Maps (Lecture Notes on Computer Sciences) , vol.5629 , pp. 10-18
    • Andreakis, A.1    Hoyningen-Huene, N.V.2    Beetz, M.3
  • 36
    • 58449101822 scopus 로고    scopus 로고
    • Self-organising mixture autoregressive model for non-stationary time series modelling
    • H. Ni and H. Yin, "Self-organising mixture autoregressive model for non-stationary time series modelling," Int. J. Neural Syst., vol. 18, no. 6, pp. 469-480, 2008.
    • (2008) Int. J. Neural Syst , vol.18 , Issue.6 , pp. 469-480
    • Ni, H.1    Yin, H.2
  • 38
    • 61849124176 scopus 로고    scopus 로고
    • Patch clustering for massive data sets
    • N. Alex, A. Hasenfuss, and B. Hammer, "Patch clustering for massive data sets," Neurocomputing, vol. 72, nos. 7-9l, pp. 1455-1469, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.7-91 , pp. 1455-1469
    • Alex, N.1    Hasenfuss, A.2    Hammer, B.3
  • 41
    • 77958050638 scopus 로고    scopus 로고
    • A weighted voting summarization of SOM ensembles
    • B. Baruque and E. Corchado, "A weighted voting summarization of SOM ensembles," Data Mining Knowl. Discovery, vol. 21, no. 3, pp. 398-426, 2010.
    • (2010) Data Mining Knowl. Discovery , vol.21 , Issue.3 , pp. 398-426
    • Baruque, B.1    Corchado, E.2
  • 42
    • 0036859375 scopus 로고    scopus 로고
    • The growing hierarchical selforganizing map: Exploratory analysis of high-dimensional data
    • Nov
    • A. Rauber, D. Merkl, and M. Dittenbach, "The growing hierarchical selforganizing map: Exploratory analysis of high-dimensional data," IEEE Trans. Neural Netw., vol. 13, no. 6, pp. 1331-1341, Nov. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.6 , pp. 1331-1341
    • Rauber, A.1    Merkl, D.2    Dittenbach, M.3
  • 43
    • 83855162220 scopus 로고    scopus 로고
    • Incremental learning from stream data
    • Dec.
    • H. He, S. Chen, K. Li, and X. Xu, "Incremental learning from stream data," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 1901-1914, Dec. 2011.
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.12 , pp. 1901-1914
    • He, H.1    Chen, S.2    Li, K.3    Xu, X.4
  • 44
    • 0001050272 scopus 로고    scopus 로고
    • A brief survey of bandwidth selection for density estimation
    • M. C. Jones, J. S. Marron, and S. J. Sheather, "A brief survey of bandwidth selection for density estimation," J. Amer. Statist. Associat., vol. 91, no. 433, pp. 401-407, 1996.
    • (1996) J. Amer. Statist. Associat , vol.91 , Issue.433 , pp. 401-407
    • Jones, M.C.1    Marron, J.S.2    Sheather, S.J.3
  • 45
    • 33745476564 scopus 로고    scopus 로고
    • Fast optimal bandwidth selection for kernel density estimation
    • V. C. Raykar and R. Duraiswami, "Fast optimal bandwidth selection for kernel density estimation," in Proc. 6th SIAM Int. Conf. Data Mining, 2006, pp. 524-528.
    • (2006) Proc. 6th SIAM Int. Conf. Data Mining , pp. 524-528
    • Raykar, V.C.1    Duraiswami, R.2
  • 48
    • 79953810111 scopus 로고    scopus 로고
    • Iterative Gaussianization: From ICA to random rotations
    • Feb.
    • V. Laparra, G. Camps-Valls, and J. Malo, "Iterative Gaussianization: From ICA to random rotations," IEEE Trans. Neural Netw., vol. 22, no. 4, pp. 537-549, Feb. 2011.
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.4 , pp. 537-549
    • Laparra, V.1    Camps-Valls, G.2    Malo, J.3
  • 49
    • 84876936071 scopus 로고    scopus 로고
    • Entropy-based incremental variational bayes learning of Gaussian mixtures
    • Mar.
    • A. Peñalver and F. Escolano, "Entropy-based incremental variational bayes learning of Gaussian mixtures," IEEE Trans. Neural Netw., vol. 23, no. 3, pp. 534-540, Mar. 2012.
    • (2012) IEEE Trans. Neural Netw , vol.23 , Issue.3 , pp. 534-540
    • Peñalver, A.1    Escolano, F.2
  • 50
    • 0020100081 scopus 로고
    • Asymptotic quantization error of continuous signals and the quantization dimension
    • Mar
    • P. L. Zador, "Asymptotic quantization error of continuous signals and the quantization dimension," IEEE Trans. Inform. Theory, vol. 28, no. 2, pp. 149-159, Mar. 1982.
    • (1982) IEEE Trans. Inform. Theory , vol.28 , Issue.2 , pp. 149-159
    • Zador, P.L.1
  • 51
    • 0029203539 scopus 로고
    • Asymptotic level density in topological feature maps
    • Jan
    • D. Dersch and P. Tavan, "Asymptotic level density in topological feature maps," IEEE Trans. Neural Netw., vol. 6, no. 1, pp. 230-236, Jan. 1995.
    • (1995) IEEE Trans. Neural Netw , vol.6 , Issue.1 , pp. 230-236
    • Dersch, D.1    Tavan, P.2
  • 52
    • 0027632248 scopus 로고
    • Neural-gas network for vector quantization and its application to time-series prediction
    • Jul
    • T. M. Martinetz, S. G. Berkovich, and K. J. Schulten, "Neural-gas network for vector quantization and its application to time-series prediction," IEEE Trans. Neural Netw., vol. 4, no. 4, pp. 558-569, Jul. 1993.
    • (1993) IEEE Trans. Neural Netw , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 53
    • 33646981873 scopus 로고
    • Characterization of strange attractors
    • P. Grassberger and I. Procaccia, "Characterization of strange attractors," Phys. Rev. Lett., vol. 50, no. 5, pp. 346-349, 1983.
    • (1983) Phys. Rev. Lett , vol.50 , Issue.5 , pp. 346-349
    • Grassberger, P.1    Procaccia, I.2
  • 54
    • 0032070312 scopus 로고    scopus 로고
    • Intrinsic dimensionality estimation with optimally topology preserving maps
    • May
    • J. Bruske and G. Sommer, "Intrinsic dimensionality estimation with optimally topology preserving maps," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 5, pp. 572-575, May 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell , vol.20 , Issue.5 , pp. 572-575
    • Bruske, J.1    Sommer, G.2
  • 55
    • 0001449448 scopus 로고    scopus 로고
    • Controlling the magnification factor of self-organizing feature maps
    • H. U. Bauer, R. Der, and M. Herrmann, "Controlling the magnification factor of self-organizing feature maps," Neural Comput., vol. 8, no. 4, pp. 757-771, 1996.
    • (1996) Neural Comput , vol.8 , Issue.4 , pp. 757-771
    • Bauer, H.U.1    Der, R.2    Herrmann, M.3
  • 56
    • 33644899424 scopus 로고    scopus 로고
    • Magnification control in self-organizing maps and neural gas
    • T. Villmann and J. C. Claussen, "Magnification control in self-organizing maps and neural gas," Neural Comput., vol. 18, no. 2, pp. 446-469, 2006.
    • (2006) Neural Comput , vol.18 , Issue.2 , pp. 446-469
    • Villmann, T.1    Claussen, J.C.2
  • 57
    • 0001927585 scopus 로고
    • On information and sufficiency
    • S. Kullback and R. A. Leibler, "On information and sufficiency," Ann. Math. Statist., vol. 22, no. 1, pp. 79-86, 1951.
    • (1951) Ann. Math. Statist , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 58
    • 26444495559 scopus 로고    scopus 로고
    • Divergence estimation of continuous distributions based on data-dependent partitions
    • Sep
    • Q. Wang, S. R. Kulkarni, and S. Verdú, "Divergence estimation of continuous distributions based on data-dependent partitions," IEEE Trans. Inform. Theory, vol. 51, no. 9, pp. 3064-3074, Sep. 2005.
    • (2005) IEEE Trans. Inform. Theory , vol.51 , Issue.9 , pp. 3064-3074
    • Wang, Q.1    Kulkarni, S.R.2    Verdú, S.3
  • 59
    • 65749108082 scopus 로고    scopus 로고
    • Divergence estimation for multidimensional densities via k-nearest-neighbor distances
    • May
    • Q. Wang, S. R. Kulkarni, and S. Verdú, "Divergence estimation for multidimensional densities via k-nearest-neighbor distances," IEEE Trans. Inform. Theory, vol. 55, no. 5, pp. 2392-2405, May 2009.
    • (2009) IEEE Trans. Inform. Theory , vol.55 , Issue.5 , pp. 2392-2405
    • Wang, Q.1    Kulkarni, S.R.2    Verdú, S.3
  • 63
    • 45149141217 scopus 로고
    • Alternative models for conditional stock volatility
    • A. R. Pagan and G. W. Schwert, "Alternative models for conditional stock volatility," J. Econometrics, vol. 45, nos. 1-2, pp. 267-290, 1990.
    • (1990) J. Econometrics , vol.45 , Issue.1-2 , pp. 267-290
    • Pagan, A.R.1    Schwert, G.W.2
  • 65
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • May
    • H. He and E. A. Garcia, "Learning from imbalanced data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, May 2009.
    • (2009) IEEE Trans. Knowl. Data Eng , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 66
    • 77957793322 scopus 로고    scopus 로고
    • RAMOBoost: Ranked minority oversampling in boosting
    • Aug.
    • S. Chen, H. He, and E. A. Garcia, "RAMOBoost: Ranked minority oversampling in boosting," IEEE Trans. Neural Netw., vol. 21, no. 10, pp. 1624-1642, Aug. 2010.
    • (2010) IEEE Trans. Neural Netw , vol.21 , Issue.10 , pp. 1624-1642
    • Chen, S.1    He, H.2    Garcia, E.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.