메뉴 건너뛰기




Volumn 6321 LNAI, Issue PART 1, 2010, Pages 135-150

Leveraging bagging for evolving data streams

Author keywords

[No Author keywords available]

Indexed keywords

DATA STREAM; ENSEMBLE METHODS; EVALUATION STUDY; RANDOM FORESTS; REAL-WORLD DATASETS;

EID: 78049329476     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-15880-3_15     Document Type: Conference Paper
Times cited : (365)

References (28)
  • 3
    • 70450087847 scopus 로고    scopus 로고
    • Learning from time-changing data with adaptive windowing
    • Jonker, W., Petković, M. eds., Springer, Heidelberg
    • Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: Jonker, W., Petković, M. (eds.) SDM 2007. LNCS, vol. 4721. Springer, Heidelberg (2007)
    • (2007) SDM 2007. LNCS , vol.4721
    • Bifet, A.1    Gavaldà, R.2
  • 5
    • 79956323714 scopus 로고    scopus 로고
    • Fast perceptron decision tree learning from evolving data streams
    • Zaki, M. J., Yu, J. X., Ravindran, B., Pudi, V. eds., Springer, Heidelberg
    • Bifet, A., Holmes, G., Pfahringer, B., Frank, E.: Fast perceptron decision tree learning from evolving data streams. In: Zaki, M. J., Yu, J. X., Ravindran, B., Pudi, V. (eds.) Advances in Knowledge Discovery and Data Mining. LNCS, vol. 6119, pp. 299-310. Springer, Heidelberg (2010)
    • (2010) Advances in Knowledge Discovery and Data Mining. LNCS , vol.6119 , pp. 299-310
    • Bifet, A.1    Holmes, G.2    Pfahringer, B.3    Frank, E.4
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L.: Bagging predictors. Machine Learning 24(2), 123-140 (1996)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Machine Learning 45(1), 5-32 (2001)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 11
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7, 1-30 (2006) (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 12
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via errorcorrecting output codes
    • Dietterich, T. G., Bakiri, G.: Solving multiclass learning problems via errorcorrecting output codes. J. Artif. Intell. Res. (JAIR) 2, 263-286 (1995)
    • (1995) J. Artif. Intell. Res. (JAIR) , vol.2 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 13
    • 85172419807 scopus 로고    scopus 로고
    • Why does bagging work? A bayesian account and its implications
    • Domingos, P.: Why does bagging work? A bayesian account and its implications. In: KDD, pp. 155-158 (1997)
    • (1997) KDD , pp. 155-158
    • Domingos, P.1
  • 14
    • 0034592938 scopus 로고    scopus 로고
    • Mining high-speed data streams
    • Domingos, P., Hulten, G.: Mining high-speed data streams. In: KDD, pp. 71-80 (2000)
    • (2000) KDD , pp. 71-80
    • Domingos, P.1    Hulten, G.2
  • 16
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curse-of-dimensionality
    • Friedman, J. H.: On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Min. Knowl. Discov. 1(1), 55-77 (1997)
    • (1997) Data Min. Knowl. Discov. , vol.1 , Issue.1 , pp. 55-77
    • Friedman, J.H.1
  • 17
    • 33749618778 scopus 로고    scopus 로고
    • Learning with drift detection
    • Bazzan, A. L. C., Labidi, S. eds., Springer, Heidelberg
    • Gama, J., Medas, P., Castillo, G., Rodrigues, P. P.: Learning with drift detection. In: Bazzan, A. L. C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286-295. Springer, Heidelberg (2004)
    • (2004) SBIA 2004. LNCS (LNAI) , vol.3171 , pp. 286-295
    • Gama, J.1    Medas, P.2    Castillo, G.3    Rodrigues, P.P.4
  • 18
    • 70350649252 scopus 로고    scopus 로고
    • Accurate decision trees for mining high-speed data streams
    • Gama, J., Rocha, R., Medas, P.: Accurate decision trees for mining high-speed data streams. In: KDD, pp. 523-528 (2003)
    • (2003) KDD , pp. 523-528
    • Gama, J.1    Rocha, R.2    Medas, P.3
  • 19
    • 3543107923 scopus 로고    scopus 로고
    • Bagging equalizes influence
    • Grandvalet, Y.: Bagging equalizes influence. Machine Learning 55(3), 251-270 (2004)
    • (2004) Machine Learning , vol.55 , Issue.3 , pp. 251-270
    • Grandvalet, Y.1
  • 21
    • 33646399422 scopus 로고    scopus 로고
    • Stress-testing hoeffding trees
    • Jorge, A. M., Torgo, L., Brazdil, P. B., Camacho, R., Gama, J. eds., Springer, Heidelberg
    • Holmes, G., Kirkby, R., Pfahringer, B.: Stress-testing Hoeffding trees. In: Jorge, A. M., Torgo, L., Brazdil, P. B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 495-502. Springer, Heidelberg (2005)
    • (2005) PKDD 2005. LNCS (LNAI) , vol.3721 , pp. 495-502
    • Holmes, G.1    Kirkby, R.2    Pfahringer, B.3
  • 22
    • 0035789299 scopus 로고    scopus 로고
    • Mining time-changing data streams
    • Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: KDD, pp. 97-106 (2001)
    • (2001) KDD , pp. 97-106
    • Hulten, G.1    Spencer, L.2    Domingos, P.3
  • 23
    • 27944503134 scopus 로고    scopus 로고
    • Lossless online bayesian bagging
    • Lee, H. K. H., Clyde, M. A.: Lossless online bayesian bagging. J. Mach. Learn. Res. 5, 143-151 (2004)
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 143-151
    • Lee, H.K.H.1    Clyde, M.A.2
  • 25
    • 0035789318 scopus 로고    scopus 로고
    • Experimental comparisons of online and batch versions of bagging and boosting
    • Oza, N. C., Russell, S. J.: Experimental comparisons of online and batch versions of bagging and boosting. In: KDD, pp. 359-364 (2001)
    • (2001) KDD , pp. 359-364
    • Oza, N.C.1    Russell, S.J.2
  • 28
    • 0035788947 scopus 로고    scopus 로고
    • A streaming ensemble algorithm (SEA) for large-scale classification
    • Street, W. N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: KDD, pp. 377-382 (2001)
    • (2001) KDD , pp. 377-382
    • Street, W.N.1    Kim, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.