메뉴 건너뛰기




Volumn 71, Issue , 2014, Pages 183-195

Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition

Author keywords

Eigenvalue decomposition; EM type algorithms; F G algorithm; Integrated completed likelihood; Model based clustering; Multivariate t mixture models

Indexed keywords

EIGENVALUE DECOMPOSITION; EM-TYPE ALGORITHMS; INTEGRATED COMPLETED LIKELIHOOD; MODEL-BASED CLUSTERING; MULTIVARIATE T;

EID: 84889102495     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2013.02.020     Document Type: Article
Times cited : (28)

References (59)
  • 1
    • 77958055170 scopus 로고    scopus 로고
    • Extending mixtures of multivariate t-factor analyzers
    • J.L. Andrews, and P.D. McNicholas Extending mixtures of multivariate t-factor analyzers Stat. Comput. 21 2011 361 373
    • (2011) Stat. Comput. , vol.21 , pp. 361-373
    • Andrews, J.L.1    McNicholas, P.D.2
  • 2
    • 84863556177 scopus 로고    scopus 로고
    • Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions
    • J.L. Andrews, and P.D. McNicholas Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions Stat. Comput. 22 2012 1021 1029
    • (2012) Stat. Comput. , vol.22 , pp. 1021-1029
    • Andrews, J.L.1    McNicholas, P.D.2
  • 3
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • J.D. Banfield, and A.E. Raftery Model-based Gaussian and non-Gaussian clustering Biometrics 49 1993 803 821 (Pubitemid 23298358)
    • (1993) Biometrics , vol.49 , Issue.3 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 4
    • 0030326891 scopus 로고    scopus 로고
    • Regularized Gaussian discriminant analysis through eigenvalue decomposition
    • H. Bensmail, and G. Celeux Regularized Gaussian discriminant analysis through eigenvalue decomposition J. Amer. Statist. Assoc. 91 1996 1743 1748
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 1743-1748
    • Bensmail, H.1    Celeux, G.2
  • 6
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • C. Biernacki, G. Celeux, and G. Govaert Assessing a mixture model for clustering with the integrated completed likelihood IEEE Trans. Pattern Anal. Mach. Intell. 22 2000 719 725
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 7
    • 33750342111 scopus 로고    scopus 로고
    • Model-based cluster and discriminant analysis with the MIXMOD software
    • DOI 10.1016/j.csda.2005.12.015, PII S0167947305003300
    • C. Biernacki, G. Celeux, G. Govaert, and F. Langrognet Model-based clustering and discriminant analysis with the MIXMOD software Comput. Statist. Data Anal. 51 2006 587 600 (Pubitemid 44635895)
    • (2006) Computational Statistics and Data Analysis , vol.51 , Issue.2 , pp. 587-600
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3    Langrognet, F.4
  • 9
    • 0001730744 scopus 로고
    • The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family
    • D. Böhning, E. Dietz, R. Schaub, P. Schlattmann, and B. Lindsay The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family Ann. Inst. Statist. Math. 46 1994 373 388
    • (1994) Ann. Inst. Statist. Math. , vol.46 , pp. 373-388
    • Böhning, D.1    Dietz, E.2    Schaub, R.3    Schlattmann, P.4    Lindsay, B.5
  • 10
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo em algorithm
    • J.G. Booth, and J.P. Hobert Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm J. Roy. Statist. Soc. Ser. B 61 1999 265 285
    • (1999) J. Roy. Statist. Soc. Ser. B , vol.61 , pp. 265-285
    • Booth, J.G.1    Hobert, J.P.2
  • 11
    • 0001626339 scopus 로고
    • A classification em algorithm for clustering and two stochastic versions
    • G. Celeux, and G. Govaert A classification EM algorithm for clustering and two stochastic versions Comput. Statist. Data Anal. 14 1992 315 332
    • (1992) Comput. Statist. Data Anal. , vol.14 , pp. 315-332
    • Celeux, G.1    Govaert, G.2
  • 12
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • G. Celeux, and G. Govaert Gaussian parsimonious clustering models Pattern Recognit. 28 1995 781 793
    • (1995) Pattern Recognit. , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 13
    • 0040766419 scopus 로고
    • A remark on algorithm AS 211. The F-G diagonalization algorithm
    • D.B. Clarkson A remark on algorithm AS 211. The F-G diagonalization algorithm Appl. Stat. 37 1988 147 151
    • (1988) Appl. Stat. , vol.37 , pp. 147-151
    • Clarkson, D.B.1
  • 14
    • 0038988125 scopus 로고
    • A least squares version of algorithm AS 211: The F-G diagonalization algorithm
    • D.B. Clarkson A least squares version of algorithm AS 211: the F-G diagonalization algorithm Appl. Stat. 37 1988 317 321
    • (1988) Appl. Stat. , vol.37 , pp. 317-321
    • Clarkson, D.B.1
  • 15
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm (with discussion)
    • A.P. Dempster, N.M. Laird, and D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm (with discussion) J. Roy. Statist. Soc. Ser. B 39 1977 1 38
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 16
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions through Bayesian sampling
    • J. Diebolt, and C.P. Robert Estimation of finite mixture distributions through Bayesian sampling J. Roy. Statist. Soc. Ser. B 56 1994 363 375
    • (1994) J. Roy. Statist. Soc. Ser. B , vol.56 , pp. 363-375
    • Diebolt, J.1    Robert, C.P.2
  • 17
    • 84950937290 scopus 로고
    • Bayesian density estimation and inference using mixtures
    • M.D. Escobar, and M. West Bayesian density estimation and inference using mixtures J. Amer. Statist. Assoc. 90 1995 577 588
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 577-588
    • Escobar, M.D.1    West, M.2
  • 18
    • 0003877648 scopus 로고
    • Monographs on Statistics and Applied Probability Chapman & Hall London, New York
    • B.S. Everitt, and D.J. Hand Finite Mixture Distributions Monographs on Statistics and Applied Probability 1981 Chapman & Hall London, New York
    • (1981) Finite Mixture Distributions
    • Everitt, B.S.1    Hand, D.J.2
  • 19
    • 0000643180 scopus 로고
    • Common principal component in k groups
    • B. Flury Common principal component in k groups J. Amer. Statist. Assoc. 79 1984 892 898
    • (1984) J. Amer. Statist. Assoc. , vol.79 , pp. 892-898
    • Flury, B.1
  • 20
    • 0001437379 scopus 로고
    • An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form
    • B.N. Flury, and W. Gautschi An algorithm for simultaneous orthogonal transformation of several positive definite symmetric matrices to nearly diagonal form J. Sci. Statist. Comput. 7 1986 169 184
    • (1986) J. Sci. Statist. Comput. , vol.7 , pp. 169-184
    • Flury, B.N.1    Gautschi, W.2
  • 21
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? which clustering method? answers via model-based cluster analysis
    • C. Fraley, and A.E. Raftery How many clusters? which clustering method? answers via model-based cluster analysis Comput. J. 41 1998 578 588
    • (1998) Comput. J. , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 22
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • C. Fraley, and A.E. Raftery Model-based clustering, discriminant analysis, and density estimation J. Amer. Statist. Assoc. 97 2002 611 612
    • (2002) J. Amer. Statist. Assoc. , vol.97 , pp. 611-612
    • Fraley, C.1    Raftery, A.E.2
  • 23
    • 0742306126 scopus 로고    scopus 로고
    • Enhanced Model-Based Clustering, Density Estimation, and Discriminant Analysis Software: MCLUST
    • C. Fraley, and A.E Raftery Enhanced model-based clustering, density estimation, and discriminant analysis software: MCLUST J. Classification 20 2003 263 286 (Pubitemid 38157158)
    • (2003) Journal of Classification , vol.20 , Issue.2 , pp. 263-286
    • Fraley, C.1    Raftery, A.E.2
  • 25
    • 34247969087 scopus 로고
    • On some invariant criteria for grouping data
    • H.P. Friedman, and J. Rubin On some invariant criteria for grouping data J. Amer. Statist. Assoc. 62 1967 1159 1178
    • (1967) J. Amer. Statist. Assoc. , vol.62 , pp. 1159-1178
    • Friedman, H.P.1    Rubin, J.2
  • 27
    • 0001551844 scopus 로고
    • Supervised learning from incomplete data via an em approach
    • JD Cowan, G Tesarro, J Alspector, Morgan Kaufmann San Francisco
    • Z. Ghahramani, and M.I. Jordan Supervised learning from incomplete data via an EM approach JD Cowan, G Tesarro, J Alspector, Advances in Neural Information Processing Systems, Vol. 6 1994 Morgan Kaufmann San Francisco 120 127
    • (1994) Advances in Neural Information Processing Systems, Vol. 6 , pp. 120-127
    • Ghahramani, Z.1    Jordan, M.I.2
  • 28
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W.K. Hastings Monte Carlo sampling methods using Markov chains and their applications Biometrika 57 1970 97 109
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 29
    • 11244326960 scopus 로고    scopus 로고
    • Clustering visualizations of multivariate data
    • C. Hurley Clustering visualizations of multivariate data J. Comput. Graph. Statist. 13 2004 788 806
    • (2004) J. Comput. Graph. Statist. , vol.13 , pp. 788-806
    • Hurley, C.1
  • 30
    • 0002954754 scopus 로고    scopus 로고
    • Consistent estimation of the order of mixture models
    • C. Keribin Consistent estimation of the order of mixture models Sankhyā Ser. A 62 2000 49 66
    • (2000) Sankhyā Ser. A , vol.62 , pp. 49-66
    • Keribin, C.1
  • 31
    • 56349112368 scopus 로고    scopus 로고
    • Maximum likelihood estimation for multivariate skew normal mixture models
    • T.I. Lin Maximum likelihood estimation for multivariate skew normal mixture models J. Multivariate Anal. 100 2009 257 265
    • (2009) J. Multivariate Anal. , vol.100 , pp. 257-265
    • Lin, T.I.1
  • 32
    • 77749280346 scopus 로고    scopus 로고
    • Robust mixture modeling using multivariate skew t distributions
    • T.I. Lin Robust mixture modeling using multivariate skew t distributions Stat. Comput. 20 2010 343 356
    • (2010) Stat. Comput. , vol.20 , pp. 343-356
    • Lin, T.I.1
  • 33
    • 70350043774 scopus 로고    scopus 로고
    • Computationally efficient learning of multivariate t mixture models with missing information
    • T.I. Lin, H.J. Ho, and P.S. Shen Computationally efficient learning of multivariate t mixture models with missing information Comput. Stat. 24 2009 375 392
    • (2009) Comput. Stat. , vol.24 , pp. 375-392
    • Lin, T.I.1    Ho, H.J.2    Shen, P.S.3
  • 34
    • 33644976711 scopus 로고    scopus 로고
    • On fast supervised learning for normal mixture models with missing information
    • T.I. Lin, J.C. Lee, and H.J. Ho On fast supervised learning for normal mixture models with missing information Pattern Recognit. 39 2006 1177 1187
    • (2006) Pattern Recognit. , vol.39 , pp. 1177-1187
    • Lin, T.I.1    Lee, J.C.2    Ho, H.J.3
  • 35
    • 3943111574 scopus 로고    scopus 로고
    • Bayesian analysis of mixture modelling using the multivariate t distribution
    • DOI 10.1023/B:STCO.0000021410.33077.10
    • T.I. Lin, J.C. Lee, and H.F. Ni Bayesian analysis of mixture modelling using the multivariate t distribution Stat. Comput. 14 2004 119 130 (Pubitemid 39051295)
    • (2004) Statistics and Computing , vol.14 , Issue.2 , pp. 119-130
    • Lin, T.I.1    Lee, J.C.2    Ni, H.F.3
  • 37
    • 0000315742 scopus 로고
    • The ECME algorithm: A simple extension of em and ECM with faster monotone convergence
    • C.H. Liu, and D.B. Rubin The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence Biometrika 81 1994 633 648
    • (1994) Biometrika , vol.81 , pp. 633-648
    • Liu, C.H.1    Rubin, D.B.2
  • 38
    • 0001508169 scopus 로고    scopus 로고
    • Parameter expansion to accelerate EM: The PX-EM algorithm
    • C.H. Liu, D.B. Rubin, and Y.N. Wu Parameter expansion to accelerate EM: the PX-EM algorithm Biometrika 85 1998 755 770
    • (1998) Biometrika , vol.85 , pp. 755-770
    • Liu, C.H.1    Rubin, D.B.2    Wu, Y.N.3
  • 41
    • 84947788012 scopus 로고    scopus 로고
    • Robust Cluster Analysis via Mixtures of Multivariate t-Distributions
    • Advances in Pattern Recognition
    • G.J. McLachlan, and D. Peel Robust cluster analysis via mixtures of multivariate t-distributions Lecture Notes in Computer Science vol. 1451 1998 Springer Berlin 658 666 (Pubitemid 128117168)
    • (1998) Lecture Notes in Computer Science , Issue.1451 , pp. 658-666
    • McLachlan, G.J.1    Peel, D.2
  • 43
    • 74149093702 scopus 로고    scopus 로고
    • Model-based classification using latent Gaussian mixture models
    • P.D. McNicholas Model-based classification using latent Gaussian mixture models J. Statist. Plann. Inference 140 2010 1175 1181
    • (2010) J. Statist. Plann. Inference , vol.140 , pp. 1175-1181
    • McNicholas, P.D.1
  • 44
    • 70549109507 scopus 로고    scopus 로고
    • Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models
    • P.D. McNicholas, T.B. Murphy, A.F. McDaid, and D. Frost Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models Comput. Statist. Data Anal. 54 2010 711 723
    • (2010) Comput. Statist. Data Anal. , vol.54 , pp. 711-723
    • McNicholas, P.D.1    Murphy, T.B.2    McDaid, A.F.3    Frost, D.4
  • 45
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • X.L. Meng, and D.B. Rubin Maximum likelihood estimation via the ECM algorithm: a general framework Biometrika 80 1993 267 278
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 47
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modeling using the t distribution
    • D. Peel, and G.J. McLachlan Robust mixture modeling using the t distribution Stat. Comput. 10 2000 339 348
    • (2000) Stat. Comput. , vol.10 , pp. 339-348
    • Peel, D.1    McLachlan, G.J.2
  • 50
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the em algorithm
    • R.A. Redner, and H.F. Walker Mixture densities, maximum likelihood and the EM algorithm SIAM Rev. 26 1984 195 239
    • (1984) SIAM Rev. , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 51
    • 0017133178 scopus 로고
    • Inference and missing data
    • D.B. Rubin Inference and missing data Biometrika 63 1976 581 592
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 54
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz Estimating the dimension of a model Ann. Statist. 6 1978 461 464
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 55
    • 0036568162 scopus 로고    scopus 로고
    • Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions
    • DOI 10.1016/S0031-3203(01)00080-2, PII S0031320301000802, Handwriting processing and applicaions
    • S. Shoham Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions Pattern Recognit. 35 2002 1127 1142 (Pubitemid 34188968)
    • (2002) Pattern Recognition , vol.35 , Issue.5 , pp. 1127-1142
    • Shoham, S.1
  • 56
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • M.A. Tanner, and W.H. Wong The calculation of posterior distributions by data augmentation (with discussion) J. Amer. Statist. Assoc. 82 1987 528 550
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 58
    • 70450240936 scopus 로고    scopus 로고
    • On em estimation for mixture of multivariate t-distributions
    • H.X. Wang, and Z. Hu On EM estimation for mixture of multivariate t-distributions Neural Process. Lett. 30 2009 243 256
    • (2009) Neural Process. Lett. , vol.30 , pp. 243-256
    • Wang, H.X.1    Hu, Z.2
  • 59
    • 1842714898 scopus 로고    scopus 로고
    • Robust mixture modelling using multivariate t-distribution with missing information
    • DOI 10.1016/j.patrec.2004.01.010, PII S0167865504000236
    • H.X. Wang, Q.B. Zhang, B. Luo, and S. Wei Robust mixture modelling using multivariate t distribution with missing information Pattern Recognit. Lett. 25 2004 701 710 (Pubitemid 38473630)
    • (2004) Pattern Recognition Letters , vol.25 , Issue.6 , pp. 701-710
    • Wang, H.X.1    Zhang, Q.B.2    Luo, B.3    Wei, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.