메뉴 건너뛰기




Volumn 30, Issue 3, 2009, Pages 243-256

On em estimation for mixture of multivariate t-distributions

Author keywords

Expectation maximization (EM) algorithm; Missing data; Mixture of multivariate t distributions; Robust modelling

Indexed keywords

EM ALGORITHMS; EXPECTATION-MAXIMIZATION ALGORITHMS; ITERATIVE ALGORITHM; LIKELIHOOD ESTIMATE; MISSING DATA; SIMULATED EXPERIMENTS; T DISTRIBUTION;

EID: 70450240936     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-009-9121-5     Document Type: Article
Times cited : (13)

References (39)
  • 1
    • 41549139266 scopus 로고    scopus 로고
    • A finite mixture model for image segmentation
    • 10.1007/s11222-007-9044-9 2390815
    • M Alfò L Nieddu D Vicari 2008 A finite mixture model for image segmentation Stat Comput 18 137 150 10.1007/s11222-007-9044-9 2390815
    • (2008) Stat Comput , vol.18 , pp. 137-150
    • Alfò, M.1    Nieddu, L.2    Vicari, D.3
  • 2
    • 70450250565 scopus 로고    scopus 로고
    • UCI Machine learning repository University of California, School of Informationand Computer Science, Irvine, CA
    • Asuncion A, Newman DJ (2007) UCI Machine learning repository [ http://www.ics.uci.edu/mlearn/MLRepository.html ]. University of California, School of Information and Computer Science, Irvine, CA
    • (2007)
    • Asuncion, A.1    Newman, D.J.2
  • 4
    • 33846479787 scopus 로고    scopus 로고
    • An empirical likelihood method in mixture models with incomplete classifications
    • 1109.62027 2327482
    • S Chen J Qin 2006 An empirical likelihood method in mixture models with incomplete classifications Stat Sinica 16 1101 1115 1109.62027 2327482
    • (2006) Stat Sinica , vol.16 , pp. 1101-1115
    • Chen, S.1    Qin, J.2
  • 5
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data using the em algorithm (with discussion)
    • 0364.62022 501537
    • AP Dempster NM Laird DB Rubin 1977 Maximum likelihood from incomplete data using the EM algorithm (with discussion) J R Stat Soc Ser B 39 1 38 0364.62022 501537
    • (1977) J R Stat Soc ser B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 6
    • 34247854939 scopus 로고    scopus 로고
    • Imputation through finite Gaussian mixture models
    • DOI 10.1016/j.csda.2006.10.002, PII S0167947306003707
    • M Di Zio U Guarnera O Luzi 2007 Imputation through finite Gaussian mixture models Comput Stat Data Anal 51 5305 5316 05559627 10.1016/j.csda.2006. 10.002 2370885 (Pubitemid 46694027)
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.11 , pp. 5305-5316
    • Di Zio, M.1    Guarnera, U.2    Luzi, O.3
  • 7
    • 41849101656 scopus 로고    scopus 로고
    • Mixture-model cluster analysis using information theoretical criteria
    • JRS Fonseca MGMS Cardoso 2007 Mixture-model cluster analysis using information theoretical criteria Intell Data Anal 11 155 173
    • (2007) Intell Data Anal , vol.11 , pp. 155-173
    • Fonseca, J.R.S.1    Mgms, C.2
  • 9
    • 0001551844 scopus 로고
    • Supervised learning from incomplete data via an em approach
    • J.D. Cowan G. Tesauro J. Alspector (eds). Morgan Kaufmann Publishers San Francisco, CA
    • Ghahramani Z, Jordan MI (1994) Supervised learning from incomplete data via an EM approach. In: Cowan JD, Tesauro G, Alspector J (eds) Advances in neural information processing systems, vol 6. Morgan Kaufmann Publishers, San Francisco, CA, pp 120-127
    • (1994) Advances in Neural Information Processing Systems, Vol 6 , pp. 120-127
    • Ghahramani, Z.1    Jordan, M.I.2
  • 10
    • 54249106794 scopus 로고    scopus 로고
    • A new image thresholding method based on Gaussian mixture model
    • 1152.68681 10.1016/j.amc.2008.05.130 2464018
    • Z-K Huang K-W Chau 2008 A new image thresholding method based on Gaussian mixture model Appl Math Comput 205 899 907 1152.68681 10.1016/j.amc.2008.05.130 2464018
    • (2008) Appl Math Comput , vol.205 , pp. 899-907
    • Huang, Z.-K.1    Chau, K.-W.2
  • 11
    • 0037469115 scopus 로고    scopus 로고
    • Mixture model clustering for mixed data with missing information
    • DOI 10.1016/S0167-9473(02)00190-1, PII S0167947302001901
    • LA Hunt MA Jorgensen 2003 Mixture model clustering for mixed data with missing information Comput Stat Data Anal 41 429 440 10.1016/S0167-9473(02) 00190-1 1973722 (Pubitemid 36065387)
    • (2003) Computational Statistics and Data Analysis , vol.41 , Issue.3-4 , pp. 429-440
    • Hunt, L.1    Jorgensen, M.2
  • 12
    • 63049130850 scopus 로고    scopus 로고
    • Model selection criteria for missing-data problems using the em algorithm
    • 10.1198/016214508000001057 2510293
    • J Ibrahim H Zhu N Tang 2008 Model selection criteria for missing-data problems using the EM algorithm J Amer Stat Assoc 103 1648 1658 10.1198/016214508000001057 2510293
    • (2008) J Amer Stat Assoc , vol.103 , pp. 1648-1658
    • Ibrahim, J.1    Zhu, H.2    Tang, N.3
  • 14
    • 45449102465 scopus 로고    scopus 로고
    • The t-mixture model approach for detecting differentially expressed genes in microarrays
    • 10.1007/s10142-007-0071-6
    • S Jiao S Zhang 2008 The t-mixture model approach for detecting differentially expressed genes in microarrays Funct Integr Genomics 8 181 186 10.1007/s10142-007-0071-6
    • (2008) Funct Integr Genomics , vol.8 , pp. 181-186
    • Jiao, S.1    Zhang, S.2
  • 16
    • 0002954754 scopus 로고    scopus 로고
    • Consistent estimation of the order of mixture models
    • 1081.62516 1769735
    • C Keribin 2000 Consistent estimation of the order of mixture models Sankhya Ser A 62 49 66 1081.62516 1769735
    • (2000) Sankhya ser A , vol.62 , pp. 49-66
    • Keribin, C.1
  • 17
    • 33644945906 scopus 로고    scopus 로고
    • Taking "don't knows" as valid responses: A multiple complete random imputation of missing data
    • 10.1007/s11135-005-5360-3
    • M Kroh 2006 Taking "don't knows" as valid responses: a multiple complete random imputation of missing data Qual Quant 40 225 244 10.1007/s11135-005-5360-3
    • (2006) Qual Quant , vol.40 , pp. 225-244
    • Kroh, M.1
  • 18
    • 84950441032 scopus 로고
    • Robust statistical modeling using the t distribution
    • 10.2307/2290063 1134486
    • KL Lange RJA Little JMG Taylor 1989 Robust statistical modeling using the t distribution J Am Stat Assoc 84 881 896 10.2307/2290063 1134486
    • (1989) J Am Stat Assoc , vol.84 , pp. 881-896
    • Lange, K.L.1    Little, R.J.A.2    Taylor, J.M.G.3
  • 19
    • 33745609280 scopus 로고    scopus 로고
    • Robust speaker identification based on t-distribution mixture model
    • 2237036
    • Y Lee H Hahn Y Han J Lee 2005 Robust speaker identification based on t-distribution mixture model Lect Notes Artif Intell 3809 896 899 2237036
    • (2005) Lect Notes Artif Intell , vol.3809 , pp. 896-899
    • Lee, Y.1    Hahn, H.2    Han, Y.3    Lee, J.4
  • 20
    • 50949099030 scopus 로고    scopus 로고
    • Multinomial mixture model with feature selection for text clustering
    • 10.1016/j.knosys.2008.03.025
    • M Li L Zhang 2008 Multinomial mixture model with feature selection for text clustering Knowl-Based Syst 21 704 708 10.1016/j.knosys.2008.03.025
    • (2008) Knowl-Based Syst , vol.21 , pp. 704-708
    • Li, M.1    Zhang, L.2
  • 21
    • 3943111574 scopus 로고    scopus 로고
    • Bayesian analysis of mixture modelling using the multivariate t distribution
    • DOI 10.1023/B:STCO.0000021410.33077.10
    • TI Lin JC Lee HF Ni 2004 Bayesian analysis of mixture modelling using the multivariate t distribution Stat Comput 14 119 130 10.1023/B:STCO.0000021410. 33077.10 2037942 (Pubitemid 39051295)
    • (2004) Statistics and Computing , vol.14 , Issue.2 , pp. 119-130
    • Lin, T.I.1    Lee, J.C.2    Ni, H.F.3
  • 22
    • 0001508169 scopus 로고    scopus 로고
    • Parameter expansion to accelerate EM: The PX-EM algorithm
    • 0921.62071 10.1093/biomet/85.4.755 1666758
    • C Liu DB Rubin YN Wu 1998 Parameter expansion to accelerate EM: the PX-EM algorithm Biometrika 85 755 770 0921.62071 10.1093/biomet/85.4.755 1666758
    • (1998) Biometrika , vol.85 , pp. 755-770
    • Liu, C.1    Rubin, D.B.2    Wu, Y.N.3
  • 23
    • 37549015655 scopus 로고    scopus 로고
    • A semi-supervised learning algorithm on gaussian mixture with automatic model selection
    • 10.1007/s11063-007-9059-4
    • Z Lu Y Peng 2008 A semi-supervised learning algorithm on gaussian mixture with automatic model selection Neural Process Lett 27 57 66 10.1007/s11063-007-9059-4
    • (2008) Neural Process Lett , vol.27 , pp. 57-66
    • Lu, Z.1    Peng, Y.2
  • 24
    • 34247855883 scopus 로고    scopus 로고
    • Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution
    • DOI 10.1016/j.csda.2006.09.015, PII S0167947306003410
    • GJ McLachlanz RW Bean LBT Jones 2007 Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution Comput Stat Data Anal 51 5327 5338 10.1016/j.csda.2006.09.015 (Pubitemid 46694022)
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.11 , pp. 5327-5338
    • McLachlan, G.J.1    Bean, R.W.2    Ben-Tovim Jones, L.3
  • 25
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • 10.1093/bioinformatics/18.3.413
    • GJ McLachlan RW Bean D Peel 2002 A mixture model-based approach to the clustering of microarray expression data Bioinformatics 18 413 422 10.1093/bioinformatics/18.3.413
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 27
    • 18244387717 scopus 로고    scopus 로고
    • The em algorithm-an old folk song sung to a fast new tune (with discussion)
    • 1090.62518 10.1111/1467-9868.00082
    • XL Meng D van Dyk 1997 The EM algorithm-an old folk song sung to a fast new tune (with discussion) J R Stat Soc Ser B 59 511 567 1090.62518 10.1111/1467-9868.00082
    • (1997) J R Stat Soc ser B , vol.59 , pp. 511-567
    • Meng, X.L.1    Van Dyk, D.2
  • 28
    • 47649089226 scopus 로고    scopus 로고
    • A new mixture model for capture heterogeneity
    • 05529661 10.1111/j.1467-9876.2008.00620.x
    • BJT Morgan MS Ridout 2008 A new mixture model for capture heterogeneity J R Stat Soc Ser C Appl Stat 57 433 446 05529661 10.1111/j.1467-9876.2008.00620.x
    • (2008) J R Stat Soc ser C Appl Stat , vol.57 , pp. 433-446
    • Morgan, B.J.T.1    Ridout, M.S.2
  • 29
    • 33646093001 scopus 로고    scopus 로고
    • Feature representation and discrimination based on Gaussian mixture model probability densities-practices and algorithms
    • 1095.68672 10.1016/j.patcog.2006.01.005
    • P Paalanen J-K Kamarainen J Ilonen H Kälviäinen 2006 Feature representation and discrimination based on Gaussian mixture model probability densities-practices and algorithms Pattern Recognit 39 1346 1358 1095.68672 10.1016/j.patcog.2006.01.005
    • (2006) Pattern Recognit , vol.39 , pp. 1346-1358
    • Paalanen, P.1    Kamarainen, J.-K.2    Ilonen, J.3    Kälviäinen, H.4
  • 30
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modelling using the t distribution
    • 10.1023/A:1008981510081
    • D Peel GJ McLachlan 2000 Robust mixture modelling using the t distribution Stat Comput 10 339 348 10.1023/A:1008981510081
    • (2000) Stat Comput , vol.10 , pp. 339-348
    • Peel, D.1    McLachlan, G.J.2
  • 31
    • 33847327937 scopus 로고    scopus 로고
    • Handling of incomplete data sets using ICA and SOM in data mining
    • 10.1007/s00521-006-0058-6
    • H Peng S Zhu 2007 Handling of incomplete data sets using ICA and SOM in data mining Neural Comput Appl 16 167 172 10.1007/s00521-006-0058-6
    • (2007) Neural Comput Appl , vol.16 , pp. 167-172
    • Peng, H.1    Zhu, S.2
  • 32
    • 17144383187 scopus 로고    scopus 로고
    • Mixture models of missing data
    • DOI 10.1007/s11135-004-5945-2
    • T Rudas 2005 Mixture models of missing data Qual Quant 39 19 36 10.1007/s11135-004-5945-2 (Pubitemid 40526420)
    • (2005) Quality and Quantity , vol.39 , Issue.1 , pp. 19-36
    • Rudas, T.1
  • 33
    • 39749201755 scopus 로고    scopus 로고
    • A particular Gaussian mixture model for clustering and its application to image retrieval
    • DOI 10.1007/s00500-007-0247-y
    • H Sahbi 2008 A particular Gaussian mixture model for clustering and its application to image retrieval Soft Comput 12 667 676 10.1007/s00500-007-0247-y (Pubitemid 351292146)
    • (2008) Soft Computing , vol.12 , Issue.7 , pp. 667-676
    • Sahbi, H.1
  • 34
    • 0036568162 scopus 로고    scopus 로고
    • Robust clustering by deterministic agglomeration EM of mixtures of multivariate t-distributions
    • DOI 10.1016/S0031-3203(01)00080-2, PII S0031320301000802, Handwriting processing and applicaions
    • S Shoham 2002 Robust clustering by deterministic agglomeration EM of mixtures of multivariate t distributions Pattern Recognit 35 1127 1142 1005.68051 10.1016/S0031-3203(01)00080-2 (Pubitemid 34188968)
    • (2002) Pattern Recognition , vol.35 , Issue.5 , pp. 1127-1142
    • Shoham, S.1
  • 35
    • 33751248753 scopus 로고    scopus 로고
    • Missing data imputation through GTM as a mixture of t-distributions
    • DOI 10.1016/j.neunet.2005.11.003, PII S0893608006000207
    • A Vellido 2006 Missing data imputation through GTM as a mixture of t-distributions Neural Netw 19 1624 1635 05115475 10.1016/j.neunet.2005.11.003 (Pubitemid 44793158)
    • (2006) Neural Networks , vol.19 , Issue.10 , pp. 1624-1635
    • Vellido, A.1
  • 36
    • 50849094901 scopus 로고    scopus 로고
    • Formal and informal model selection with incomplete data
    • 10.1214/07-STS253
    • G Verbeke G Molenberghs C Beunckens 2008 Formal and informal model selection with incomplete data Stat Sci 23 201 218 10.1214/07-STS253
    • (2008) Stat Sci , vol.23 , pp. 201-218
    • Verbeke, G.1    Molenberghs, G.2    Beunckens, C.3
  • 37
    • 52349103637 scopus 로고    scopus 로고
    • Probabilistic two-dimensional principal component analysis and its mixture model for face recognition
    • H Wang S Chen Z Hu B Luo 2008 Probabilistic two-dimensional principal component analysis and its mixture model for face recognition Neural Comput Appl 17 541 547
    • (2008) Neural Comput Appl , vol.17 , pp. 541-547
    • Wang, H.1    Chen, S.2    Hu, Z.3    Luo, B.4
  • 38
    • 1842714898 scopus 로고    scopus 로고
    • Robust mixture modelling using multivariate t-distribution with missing information
    • DOI 10.1016/j.patrec.2004.01.010, PII S0167865504000236
    • H Wang Q Zhang B Luo S Wei 2004 Robust mixture modelling using multivariate t-distribution with missing information Pattern Recognit Lett 25 701 710 10.1016/j.patrec.2004.01.010 (Pubitemid 38473630)
    • (2004) Pattern Recognition Letters , vol.25 , Issue.6 , pp. 701-710
    • Wang, H.X.1    Zhang, Q.B.2    Luo, B.3    Wei, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.