메뉴 건너뛰기




Volumn 21, Issue 3, 2011, Pages 361-373

Extending mixtures of multivariate t-factor analyzers

Author keywords

Factor analysis; Latent variables; Mixture models; Model based clustering; Multivariate t distributions; t Factor analyzers

Indexed keywords


EID: 77958055170     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-010-9175-2     Document Type: Article
Times cited : (98)

References (53)
  • 1
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J. D., Raftery, A. E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49(3), 803-821 (1993).
    • (1993) Biometrics , vol.49 , Issue.3 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 2
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • Biernacki, C., Celeux, G., Govaert, G.: Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22(7), 719-725 (2000).
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell , vol.22 , Issue.7 , pp. 719-725
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 3
    • 85042555546 scopus 로고
    • Bayesian cluster analysis
    • Binder, D. A.: Bayesian cluster analysis. Biometrika 65, 31-38 (1978).
    • (1978) Biometrika , vol.65 , pp. 31-38
    • Binder, D.A.1
  • 4
    • 0001730744 scopus 로고
    • The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family
    • Böhning, D., Dietz, E., Schaub, R., Schlattmann, P., Lindsay, B.: The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family. Ann. Ins. Stat. Math. 46, 373-388 (1994).
    • (1994) Ann. Ins. Stat. Math , vol.46 , pp. 373-388
    • Böhning, D.1    Dietz, E.2    Schaub, R.3    Schlattmann, P.4    Lindsay, B.5
  • 6
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recogn. 28, 781-793 (1995).
    • (1995) Pattern Recogn , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 7
    • 0032337237 scopus 로고    scopus 로고
    • Detecting features in spatial point processes with clutter via model-based clustering
    • Dasgupta, A., Raftery, A. E.: Detecting features in spatial point processes with clutter via model-based clustering. J. Am. Stat. Assoc. 93, 294-302 (1998).
    • (1998) J. Am. Stat. Assoc , vol.93 , pp. 294-302
    • Dasgupta, A.1    Raftery, A.E.2
  • 8
    • 0001381164 scopus 로고
    • Estimating the components of a mixture of normal distributions
    • Day, N. E.: Estimating the components of a mixture of normal distributions. Biometrika 56, 463-474 (1969).
    • (1969) Biometrika , vol.56 , pp. 463-474
    • Day, N.E.1
  • 10
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A. P., Laird, N. M., Rubin, D. B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1-38 (1977).
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 11
    • 0001757440 scopus 로고
    • Multivariate data analysis as a discriminating method of the origin of wines
    • Forina, M., Armanino, C., Castino, M., Ubigli, M.: Multivariate data analysis as a discriminating method of the origin of wines. Vitis 25, 189-201 (1986).
    • (1986) Vitis , vol.25 , pp. 189-201
    • Forina, M.1    Armanino, C.2    Castino, M.3    Ubigli, M.4
  • 12
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering methods? Answers via model-based cluster analysis
    • Fraley, C., Raftery, A. E.: How many clusters? Which clustering methods? Answers via model-based cluster analysis. Comput. J. 41(8), 578-588 (1998).
    • (1998) Comput. J , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 13
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley, C., Raftery, A. E.: Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97(458), 611-631 (2002).
    • (2002) J. Am. Stat. Assoc , vol.97 , Issue.458 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 14
    • 0742306126 scopus 로고    scopus 로고
    • Enhanced software for model-based clustering, density estimation, and discriminant analysis: MCLUST
    • Fraley, C., Raftery, A. E.: Enhanced software for model-based clustering, density estimation, and discriminant analysis: MCLUST. J. Classif. 20, 263-286 (2003).
    • (2003) J. Classif , vol.20 , pp. 263-286
    • Fraley, C.1    Raftery, A.E.2
  • 17
    • 0003744821 scopus 로고    scopus 로고
    • The EM algorithm for factor analyzers
    • University of Toronto, Toronto
    • Ghahramani, Z., Hinton, G. E.: The EM algorithm for factor analyzers. Tech. Rep. CRG-TR-96-1. University of Toronto, Toronto (1997).
    • (1997) Tech. Rep. CRG-TR-96-1
    • Ghahramani, Z.1    Hinton, G.E.2
  • 18
    • 77249156236 scopus 로고    scopus 로고
    • A mixture of experts model for rank data with applications in election studies
    • Gormley, I. C., Murphy, T. B.: A mixture of experts model for rank data with applications in election studies. Ann. Appl. Stat. 2(4), 1452-1477 (2008).
    • (2008) Ann. Appl. Stat , vol.2 , Issue.4 , pp. 1452-1477
    • Gormley, I.C.1    Murphy, T.B.2
  • 19
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193-218 (1985).
    • (1985) J. Classif , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 20
    • 11244326960 scopus 로고    scopus 로고
    • Clustering visualizations of multivariate data
    • Hurley, C.: Clustering visualizations of multivariate data. J. Comput. Graph. Stat. 13(4), 788-806 (2004).
    • (2004) J. Comput. Graph. Stat , vol.13 , Issue.4 , pp. 788-806
    • Hurley, C.1
  • 22
    • 0002954754 scopus 로고    scopus 로고
    • Consistent estimation of the order of mixture models
    • Keribin, C.: Consistent estimation of the order of mixture models. Sankhyā Indian J. Stat. Ser. A 62(1), 49-66 (2000).
    • (2000) Sankhyā Indian J. Stat. Ser. A , vol.62 , Issue.1 , pp. 49-66
    • Keribin, C.1
  • 23
    • 21144475085 scopus 로고
    • Consistent estimation of a mixing distribution
    • Leroux, B. G.: Consistent estimation of a mixing distribution. Ann. Stat. 20, 1350-1360 (1992).
    • (1992) Ann. Stat , vol.20 , pp. 1350-1360
    • Leroux, B.G.1
  • 24
    • 0003286354 scopus 로고
    • Mixture models: theory, geometry and applications
    • Hayward: Institute of Mathematical Statistics
    • Lindsay, B. G.: Mixture models: theory, geometry and applications. In: NSF-CBMS Regional Conference Series in Probability and Statistics, vol. 5. Institute of Mathematical Statistics, Hayward (1995).
    • (1995) NSF-CBMS Regional Conference Series in Probability and Statistics , vol.5
    • Lindsay, B.G.1
  • 25
    • 1842539381 scopus 로고    scopus 로고
    • Bayesian model assessment in factor analysis
    • Lopes, H. F., West, M.: Bayesian model assessment in factor analysis. Stat. Sinica 14, 41-67 (2004).
    • (2004) Stat. Sinica , vol.14 , pp. 41-67
    • Lopes, H.F.1    West, M.2
  • 26
    • 0000648031 scopus 로고
    • On the use of discriminant functions in taxonomy
    • Lubischew, A. A.: On the use of discriminant functions in taxonomy. Biometrics 18(4), 455-477 (1962).
    • (1962) Biometrics , vol.18 , Issue.4 , pp. 455-477
    • Lubischew, A.A.1
  • 27
    • 0001294055 scopus 로고
    • The classification and mixture maximum likelihood approaches to cluster analysis
    • Amsterdam: North-Holland
    • McLachlan, G. J.: The classification and mixture maximum likelihood approaches to cluster analysis. In: Handbook of Statistics, vol. 2, pp. 199-208. North-Holland, Amsterdam (1982).
    • (1982) Handbook of Statistics , vol.2 , pp. 199-208
    • McLachlan, G.J.1
  • 30
    • 84947788012 scopus 로고    scopus 로고
    • Robust cluster analysis via mixtures of multivariate t-distributions
    • Berlin: Springer
    • McLachlan, G. J., Peel, D.: Robust cluster analysis via mixtures of multivariate t-distributions. In: Lecture Notes in Computer Science, vol. 1451, pp. 658-666. Springer, Berlin (1998).
    • (1998) Lecture Notes in Computer Science , vol.1451 , pp. 658-666
    • McLachlan, G.J.1    Peel, D.2
  • 33
    • 34247855883 scopus 로고    scopus 로고
    • Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution
    • McLachlan, G. J., Bean, R. W., Jones, L. B. T.: Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution. Comput. Stat. Data Anal. 51(11), 5327-5338 (2007).
    • (2007) Comput. Stat. Data Anal , vol.51 , Issue.11 , pp. 5327-5338
    • McLachlan, G.J.1    Bean, R.W.2    Jones, L.B.T.3
  • 34
    • 74149093702 scopus 로고    scopus 로고
    • Model-based classification using latent Gaussian mixture models
    • McNicholas, P. D.: Model-based classification using latent Gaussian mixture models. J. Stat. Plan. Inference 140(5), 1175-1181 (2010).
    • (2010) J. Stat. Plan. Inference , vol.140 , Issue.5 , pp. 1175-1181
    • McNicholas, P.D.1
  • 35
    • 70649101438 scopus 로고    scopus 로고
    • Parsimonious Gaussian mixture models
    • Department of Statistics, Trinity College Dublin
    • McNicholas, P. D., Murphy, T. B.: Parsimonious Gaussian mixture models. Tech. Rep. 05/11, Department of Statistics, Trinity College Dublin (2005).
    • (2005) Tech. Rep. 05/11
    • McNicholas, P.D.1    Murphy, T.B.2
  • 36
    • 45449088666 scopus 로고    scopus 로고
    • Parsimonious Gaussian mixture models
    • McNicholas, P. D., Murphy, T. B.: Parsimonious Gaussian mixture models. Stat. Comput. 18, 285-296 (2008).
    • (2008) Stat. Comput , vol.18 , pp. 285-296
    • McNicholas, P.D.1    Murphy, T.B.2
  • 37
    • 77949908759 scopus 로고    scopus 로고
    • Model-based clustering of longitudinal data
    • McNicholas, P. D., Murphy, T. B.: Model-based clustering of longitudinal data. Can. J. Stat. 38(1), 153-168 (2010).
    • (2010) Can. J. Stat , vol.38 , Issue.1 , pp. 153-168
    • McNicholas, P.D.1    Murphy, T.B.2
  • 38
    • 70549109507 scopus 로고    scopus 로고
    • Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models
    • McNicholas, P. D., Murphy, T. B., McDaid, A. F., Frost, D.: Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models. Comput. Stat. Data Anal. 54(3), 711-723 (2010).
    • (2010) Comput. Stat. Data Anal , vol.54 , Issue.3 , pp. 711-723
    • McNicholas, P.D.1    Murphy, T.B.2    McDaid, A.F.3    Frost, D.4
  • 39
    • 18244387717 scopus 로고    scopus 로고
    • The EM algorithm-an old folk song sung to a fast new tune (with discussion)
    • Meng, X. L., van Dyk: The EM algorithm-an old folk song sung to a fast new tune (with discussion). J. R. Stat. Soc. Ser. B 59, 511-567 (1997).
    • (1997) J. R. Stat. Soc. Ser. B , vol.59 , pp. 511-567
    • Meng, X.L.1    van Dyk2
  • 40
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: a general framework
    • Meng, X. L., Rubin, D. B.: Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267-278 (1993).
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 41
    • 84908418476 scopus 로고    scopus 로고
    • R: a language and environment for statistical computing
    • Austria: Vienna
    • R Development Core Team (2009) R: a language and environment for statistical computing: R foundation for statistical computing, Vienna, Austria. http://www. R-project. org.
    • (2009) R foundation for statistical computing
  • 42
    • 33645505223 scopus 로고    scopus 로고
    • Variable selection for model-based clustering
    • Raftery, A. E., Dean, N.: Variable selection for model-based clustering. J. Am. Stat. Assoc. 101(473), 168-178 (2006).
    • (2006) J. Am. Stat. Assoc , vol.101 , Issue.473 , pp. 168-178
    • Raftery, A.E.1    Dean, N.2
  • 43
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W. M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846-850 (1971).
    • (1971) J. Am. Stat. Assoc , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 44
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 31-38 (1978).
    • (1978) Ann. Stat , vol.6 , pp. 31-38
    • Schwarz, G.1
  • 45
    • 77956881791 scopus 로고    scopus 로고
    • Dimension reduction for model-based clustering
    • doi: 10. 1007/s11222-009-9138-7
    • Scrucca, L.: Dimension reduction for model-based clustering. Stat. Comput. (2009, in press). doi: 10. 1007/s11222-009-9138-7.
    • (2009) Stat. Comput
    • Scrucca, L.1
  • 46
    • 0036568162 scopus 로고    scopus 로고
    • Robust clustering by deterministic agglomeration em of mixtures of multivariate t-distributions
    • Shoham, S.: Robust clustering by deterministic agglomeration em of mixtures of multivariate t-distributions. Pattern Recogn. 35(5), 1127-1142 (2002).
    • (2002) Pattern Recogn , vol.35 , Issue.5 , pp. 1127-1142
    • Shoham, S.1
  • 48
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • Tipping, T. E., Bishop, C. M.: Mixtures of probabilistic principal component analysers. Neural Comput. 11(2), 443-482 (1999a).
    • (1999) Neural Comput , vol.11 , Issue.2 , pp. 443-482
    • Tipping, T.E.1    Bishop, C.M.2
  • 49
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysers
    • Tipping, T. E., Bishop, C. M.: Probabilistic principal component analysers. J. R. Stat. Soc. Ser. B 61, 611-622 (1999b).
    • (1999) J. R. Stat. Soc. Ser. B , vol.61 , pp. 611-622
    • Tipping, T.E.1    Bishop, C.M.2
  • 50
    • 0009909260 scopus 로고
    • Object cluster analysis of social areas
    • University of California, Berkeley
    • Wolfe, J. H.: Object cluster analysis of social areas. Master's thesis, University of California, Berkeley (1963).
    • (1963) Master's thesis
    • Wolfe, J.H.1
  • 51
    • 0012393308 scopus 로고
    • Pattern clustering by multivariate mixture analysis
    • Wolfe, J. H.: Pattern clustering by multivariate mixture analysis. Multiv. Behav. Res. 5, 329-350 (1970).
    • (1970) Multiv. Behav. Res , vol.5 , pp. 329-350
    • Wolfe, J.H.1
  • 52
    • 0003742929 scopus 로고
    • Inverting modified matrices
    • No. 42, Princeton University, Princeton, New Jersey
    • Woodbury, M. A.: Inverting modified matrices. Statistical Research Group, Memo. Rep. No. 42, Princeton University, Princeton, New Jersey (1950).
    • (1950) Statistical Research Group, Memo. Rep
    • Woodbury, M.A.1
  • 53
    • 33748413305 scopus 로고    scopus 로고
    • Probabilistic PCA for t distributions
    • Zhao, J., Jiang, Q.: Probabilistic PCA for t distributions. Neurocomputing 69(16-18), 2217-2226 (2006).
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2217-2226
    • Zhao, J.1    Jiang, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.