메뉴 건너뛰기




Volumn 14, Issue 2, 2004, Pages 119-130

Bayesian analysis of mixture modelling using the multivariate t distribution

Author keywords

ECM; ECME; Maximum a posteriori; Maximum likelihood estimation; MCMC; t mixture model

Indexed keywords


EID: 3943111574     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:STCO.0000021410.33077.10     Document Type: Article
Times cited : (31)

References (36)
  • 1
    • 0010809675 scopus 로고
    • Topics in the investigation of linear relations fitted by the method of least squares
    • Anscombe F.J. 1967. Topics in the investigation of linear relations fitted by the method of least squares. Journal of the Royal Statistical Soc B 29: 1-52.
    • (1967) Journal of the Royal Statistical Soc B , vol.29 , pp. 1-52
    • Anscombe, F.J.1
  • 4
    • 84970548695 scopus 로고
    • A multivariate study of variation in two species of rock crab of genus Leptograpsus
    • Campbell N.A. and Mahon R.J. 1974. A multivariate study of variation in two species of rock crab of genus Leptograpsus. Australian Journal of Zoology 22: 417-425.
    • (1974) Australian Journal of Zoology , vol.22 , pp. 417-425
    • Campbell, N.A.1    Mahon, R.J.2
  • 5
    • 0012626964 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: Computing the asymptotic variance
    • van Dyk D.A., Meng X.L. and Rubin D.B. 1995. Maximum likelihood estimation via the ECM algorithm: Computing the asymptotic variance. Statistica Sinica 5: 55-75.
    • (1995) Statistica Sinica , vol.5 , pp. 55-75
    • Van Dyk, D.A.1    Meng, X.L.2    Rubin, D.B.3
  • 7
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions through Bayesian sampling
    • Diebolt J. and Robert C.P. 1994. Estimation of finite mixture distributions through Bayesian sampling. Journal of the Royal Statistical Society B 56: 363-375.
    • (1994) Journal of the Royal Statistical Society B , vol.56 , pp. 363-375
    • Diebolt, J.1    Robert, C.P.2
  • 8
    • 84964203940 scopus 로고
    • Bootstrap method for standard errors, confidence intervals, and other measures of statistical accuracy
    • London: Chapman & Hall
    • Efron B. and Tibshirani R. 1986. Bootstrap method for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1: 54-77. London: Chapman & Hall.
    • (1986) Statistical Science , vol.1 , pp. 54-77
    • Efron, B.1    Tibshirani, R.2
  • 9
    • 1842815959 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo estimation of classical and dynamic switching and mixture models
    • Fruhwirth-Schnatter S. 2001. Markov Chain Monte Carlo estimation of classical and dynamic switching and mixture models. Journal of the American Statistical Association 96: 194-209.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 194-209
    • Fruhwirth-Schnatter, S.1
  • 12
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman A.E. and Rubin D.B. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7: 457-511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.E.1    Rubin, D.B.2
  • 14
    • 0001354471 scopus 로고
    • A constrained formulation of maximum-likelihood estimation for normal mixture distributions
    • Hathaway R.J. 1985. A constrained formulation of maximum-likelihood estimation for normal mixture distributions. Annals of Statistics 13(2): 795-800.
    • (1985) Annals of Statistics , vol.13 , Issue.2 , pp. 795-800
    • Hathaway, R.J.1
  • 15
    • 0001230939 scopus 로고
    • A comparison of iterative maximum-likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample
    • Hosmer D.W. 1973. A comparison of iterative maximum-likelihood estimates of the parameters of a mixture of two normal distributions under three different types of sample. Biometrics 29: 761-770.
    • (1973) Biometrics , vol.29 , pp. 761-770
    • Hosmer, D.W.1
  • 16
    • 0000315742 scopus 로고
    • The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence
    • Liu C.H. and Rubin D.B. 1994. The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence. Biometrika 81: 633-648.
    • (1994) Biometrika , vol.81 , pp. 633-648
    • Liu, C.H.1    Rubin, D.B.2
  • 17
    • 0000106418 scopus 로고
    • Missing data imputation using the multivariate t distribution
    • Liu C.H. 1995. Missing data imputation using the multivariate t distribution. Journal of Multivariate Analysis 53: 139-158.
    • (1995) Journal of Multivariate Analysis , vol.53 , pp. 139-158
    • Liu, C.H.1
  • 18
    • 0002864973 scopus 로고
    • ML estimation of the t distribution using EM and its extensions, ECM and ECME
    • Liu C.H. and Rubin D.B. 1995. ML estimation of the t distribution using EM and its extensions, ECM and ECME. Statistica Sinica 5: 19-39.
    • (1995) Statistica Sinica , vol.5 , pp. 19-39
    • Liu, C.H.1    Rubin, D.B.2
  • 20
    • 84947788012 scopus 로고    scopus 로고
    • Robust cluster analysis via mixtures of multivariate t-distribution
    • A. Amin, D. Dori, P. Pudil, and H. Freeman (Eds.). Berlin, Springer-Verlag
    • McLachlan G.J. and Peel D. 1998. Robust cluster analysis via mixtures of multivariate t-distribution. In: A. Amin, D. Dori, P. Pudil, and H. Freeman (Eds.), Lecture Notes in Computer Science, 1451. Berlin, Springer-Verlag, pp. 658-666.
    • (1998) Lecture Notes in Computer Science, 1451 , pp. 658-666
    • McLachlan, G.J.1    Peel, D.2
  • 23
    • 84864615423 scopus 로고
    • Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm
    • Meng X.L. and Rubin D.B. 1991. Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. Journal of the American Statistical Association 86: 899-909.
    • (1991) Journal of the American Statistical Association , vol.86 , pp. 899-909
    • Meng, X.L.1    Rubin, D.B.2
  • 24
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • Meng X.L. and Rubin D.B. 1993. Maximum likelihood estimation via the ECM algorithm: A general framework. Biometrika 80: 267-278.
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 26
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modeling using the t distribution
    • Peel D. and McLachlan G.J. 2000. Robust mixture modeling using the t distribution. Statistics and Computing 10: 339-348.
    • (2000) Statistics and Computing , vol.10 , pp. 339-348
    • Peel, D.1    McLachlan, G.J.2
  • 27
    • 0000783674 scopus 로고    scopus 로고
    • Hypothesis testing and model selection via posterior simulation
    • W.R. Gilks, S. Richardson and D.J. Spiegelhalter (Eds.), Chapman & Hall, London
    • Raftery A.E. 1996. Hypothesis testing and model selection via posterior simulation. In: W.R. Gilks, S. Richardson and D.J. Spiegelhalter (Eds.), practice Markov Chain Monte Carlo pp. 163-188. Chapman & Hall, London.
    • (1996) Practice Markov Chain Monte Carlo , pp. 163-188
    • Raftery, A.E.1
  • 28
    • 0001565436 scopus 로고
    • The utilization of multiple measurements in problems of biological classification
    • Rao C.R. 1948. The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Society B 10: 159-203.
    • (1948) Journal of the Royal Statistical Society B , vol.10 , pp. 159-203
    • Rao, C.R.1
  • 29
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner R.A. and Walker H.F. 1984. Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26: 195-239.
    • (1984) SIAM Rev , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 31
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • Richardson S. and Green P.J. 1997. On Bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society B 59: 731-792.
    • (1997) Journal of the Royal Statistical Society B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 33
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical prediction
    • Stone, M. 1974. Cross-validatory choice and assessment of statistical prediction (with discussion). Journal of the Royal Statistical Society B 36: 111-147.
    • (1974) Journal of the Royal Statistical Society B , vol.36 , pp. 111-147
    • Stone, M.1
  • 34
    • 3943110483 scopus 로고
    • Discussion on "Topics in the investigation of linear relations fitted by the method of least squares"
    • Tiao G.C. 1967. Discussion on "Topics in the investigation of linear relations fitted by the method of least squares." Journal of the Royal Statistical Society, series B 29: 44-47.
    • (1967) Journal of the Royal Statistical Society, Series B , vol.29 , pp. 44-47
    • Tiao, G.C.1
  • 36
    • 0031521486 scopus 로고    scopus 로고
    • Simulation-based Bayesian inferences for two-variance components linear models
    • Vounatsou P. and Smith A.F.M. 1997. Simulation-based Bayesian inferences for two-variance components linear models. Journal of Statistical Planning Inferences 29: 139-161.
    • (1997) Journal of Statistical Planning Inferences , vol.29 , pp. 139-161
    • Vounatsou, P.1    Smith, A.F.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.