메뉴 건너뛰기




Volumn 22, Issue 5, 2012, Pages 1021-1029

Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions: The tEIGEN family

Author keywords

Classification; Clustering; Discriminant analysis; Eigen decomposition; Mixture models; Model based clustering; Multivariate t distribution

Indexed keywords


EID: 84863556177     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-011-9272-x     Document Type: Article
Times cited : (127)

References (52)
  • 1
    • 77958055170 scopus 로고    scopus 로고
    • Extending mixtures of multivariate t-factor analyzers
    • Andrews, J. L., McNicholas, P. D.: Extending mixtures of multivariate t-factor analyzers. Stat. Comput. 21(3), 361-373 (2011a).
    • (2011) Stat. Comput. , vol.21 , Issue.3 , pp. 361-373
    • Andrews, J.L.1    McNicholas, P.D.2
  • 2
    • 78650198655 scopus 로고    scopus 로고
    • Mixtures of modified t-factor analyzers for model-based clustering, classification, and discriminant analysis
    • Andrews, J. L., McNicholas, P. D.: Mixtures of modified t-factor analyzers for model-based clustering, classification, and discriminant analysis. J. Stat. Plan. Inference 141(4), 1479-1486 (2011b).
    • (2011) J. Stat. Plan. Inference , vol.141 , Issue.4 , pp. 1479-1486
    • Andrews, J.L.1    McNicholas, P.D.2
  • 3
    • 77958067477 scopus 로고    scopus 로고
    • Model-based classification via mixtures of multivariate t-distributions
    • Andrews, J. L., McNicholas, P. D., Subedi, S.: Model-based classification via mixtures of multivariate t-distributions. Comput. Stat. Data Anal. 55(1), 520-529 (2011).
    • (2011) Comput. Stat. Data Anal. , vol.55 , Issue.1 , pp. 520-529
    • Andrews, J.L.1    McNicholas, P.D.2    Subedi, S.3
  • 4
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J. D., Raftery, A. E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49(3), 803-821 (1993).
    • (1993) Biometrics , vol.49 , Issue.3 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 5
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum, L. E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41, 164-171 (1970).
    • (1970) Ann. Math. Stat. , vol.41 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 6
    • 0141477361 scopus 로고
    • Bayesian computation and stochastic systems
    • Besag, J., Green, P., Higdon, D., Mengersen, K.: Bayesian computation and stochastic systems. Stat. Sci. 10(1), 3-41 (1995).
    • (1995) Stat. Sci. , vol.10 , Issue.1 , pp. 3-41
    • Besag, J.1    Green, P.2    Higdon, D.3    Mengersen, K.4
  • 8
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recognit. 28, 781-793 (1995).
    • (1995) Pattern Recognit. , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 9
    • 0032337237 scopus 로고    scopus 로고
    • Detecting features in spatial point processes with clutter via model-based clustering
    • Dasgupta, A., Raftery, A. E.: Detecting features in spatial point processes with clutter via model-based clustering. J. Am. Stat. Assoc. 93, 294-302 (1998).
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 294-302
    • Dasgupta, A.1    Raftery, A.E.2
  • 10
    • 0001381164 scopus 로고
    • Estimating the components of a mixture of normal distributions
    • Day, N. E.: Estimating the components of a mixture of normal distributions. Biometrika 56, 463-474 (1969).
    • (1969) Biometrika , vol.56 , pp. 463-474
    • Day, N.E.1
  • 11
    • 33645061488 scopus 로고    scopus 로고
    • Using unlabelled data to update classification rules with applications in food authenticity studies
    • Dean, N., Murphy, T. B., Downey, G.: Using unlabelled data to update classification rules with applications in food authenticity studies. J. R. Stat. Soc., Ser. C, Appl. Stat. 55(1), 1-14 (2006).
    • (2006) J. R. Stat. Soc., Ser. C, Appl. Stat. , vol.55 , Issue.1 , pp. 1-14
    • Dean, N.1    Murphy, T.B.2    Downey, G.3
  • 14
    • 0001757440 scopus 로고
    • Multivariate data analysis as a discriminating method of the origin of wines
    • Forina, M., Armanino, C., Castino, M., Ubigli, M.: Multivariate data analysis as a discriminating method of the origin of wines. Vitis 25, 189-201 (1986).
    • (1986) Vitis , vol.25 , pp. 189-201
    • Forina, M.1    Armanino, C.2    Castino, M.3    Ubigli, M.4
  • 15
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering methods? Answers via model-based cluster analysis
    • Fraley, C., Raftery, A. E.: How many clusters? Which clustering methods? Answers via model-based cluster analysis. Comput. J. 41(8), 578-588 (1998).
    • (1998) Comput. J. , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 16
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley, C., Raftery, A. E.: Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97(458), 611-631 (2002).
    • (2002) J. Am. Stat. Assoc. , vol.97 , Issue.458 , pp. 611-631
    • Fraley, C.1    Raftery, A.E.2
  • 17
    • 34547913193 scopus 로고    scopus 로고
    • Technical Report 504, Department of Statistics, University of Washington (2006, September). Minor revisions January 2007 and November
    • Fraley, C., Raftery, A. E.: MCLUST: version 3 for R: Normal mixture modeling and model-based clustering. Technical Report 504, Department of Statistics, University of Washington (2006, September). Minor revisions January 2007 and November 2007.
    • (2007) MCLUST: Version 3 for R: Normal mixture modeling and model-based clustering
    • Fraley, C.1    Raftery, A.E.2
  • 18
  • 19
    • 73549091028 scopus 로고    scopus 로고
    • Constrained monotone EM algorithms for mixtures of multivariate t distributions
    • Greselin, F., Ingrassia, S.: Constrained monotone EM algorithms for mixtures of multivariate t distributions. Stat. Comput. 20(1), 9-22 (2010a).
    • (2010) Stat. Comput. , vol.20 , Issue.1 , pp. 9-22
    • Greselin, F.1    Ingrassia, S.2
  • 20
    • 84879590606 scopus 로고    scopus 로고
    • Weakly homoscedastic constraints for mixtures of t-distributions
    • Studies in Classification, Data Analysis, and Knowledge Organization, A. Fink, B. Lausen, W. Seidel, and A. Ultsch (Eds.), Berlin/Heidelberg: Springer
    • Greselin, F., Ingrassia, S.: Weakly homoscedastic constraints for mixtures of t-distributions. In: Fink, A., Lausen, B., Seidel, W., Ultsch, A. (eds.) Advances in Data Analysis, Data Handling and Business Intelligence. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 219-228. Springer, Berlin/Heidelberg (2010b).
    • (2010) Advances in Data Analysis, Data Handling and Business Intelligence , pp. 219-228
    • Greselin, F.1    Ingrassia, S.2
  • 22
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193-218 (1985).
    • (1985) J. Classif. , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 23
    • 11244326960 scopus 로고    scopus 로고
    • Clustering visualizations of multivariate data
    • Hurley, C.: Clustering visualizations of multivariate data. J. Comput. Graph. Stat. 13(4), 788-806 (2004).
    • (2004) J. Comput. Graph. Stat. , vol.13 , Issue.4 , pp. 788-806
    • Hurley, C.1
  • 25
    • 27944462549 scopus 로고
    • A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion
    • Kass, R. E., Wasserman, L.: A reference Bayesian test for nested hypotheses and its relationship to the Schwarz criterion. J. Am. Stat. Assoc. 90(431), 928-934 (1995).
    • (1995) J. Am. Stat. Assoc. , vol.90 , Issue.431 , pp. 928-934
    • Kass, R.E.1    Wasserman, L.2
  • 26
    • 0002954754 scopus 로고    scopus 로고
    • Consistent estimation of the order of mixture models Sankhyā
    • Keribin, C.: Consistent estimation of the order of mixture models Sankhyā. Indian J. Stat., Ser. A 62(1), 49-66 (2000).
    • (2000) Indian J. Stat., Ser. A , vol.62 , Issue.1 , pp. 49-66
    • Keribin, C.1
  • 27
    • 21144475085 scopus 로고
    • Consistent estimation of a mixing distribution
    • Leroux, B. G.: Consistent estimation of a mixing distribution. Ann. Stat. 20, 1350-1360 (1992).
    • (1992) Ann. Stat. , vol.20 , pp. 1350-1360
    • Leroux, B.G.1
  • 28
    • 0003286354 scopus 로고
    • Mixture models: theory, geometry and applications
    • Hayward: Institute of Mathematical Statistics
    • Lindsay, B. G.: Mixture models: theory, geometry and applications. In: NSF-CBMS Regional Conference Series in Probability and Statistics, vol. 5. Institute of Mathematical Statistics, Hayward (1995).
    • (1995) NSF-CBMS Regional Conference Series in Probability and Statistics , vol.5
    • Lindsay, B.G.1
  • 29
    • 0000684645 scopus 로고
    • Breast cancer diagnosis and prognosis via linear programming
    • Mangasarian, O. L., Street, W. N., Wolberg, W. H.: Breast cancer diagnosis and prognosis via linear programming. Operations Research 43(4), 570-577 (1995).
    • (1995) Operations Research , vol.43 , Issue.4 , pp. 570-577
    • Mangasarian, O.L.1    Street, W.N.2    Wolberg, W.H.3
  • 30
    • 65749115769 scopus 로고    scopus 로고
    • Variable selection for clustering with Gaussian mixture models
    • Maugis, C., Celeux, G., Martin-Magniette, M.-L.: Variable selection for clustering with Gaussian mixture models. Biometrics 65(3), 701-709 (2009).
    • (2009) Biometrics , vol.65 , Issue.3 , pp. 701-709
    • Maugis, C.1    Celeux, G.2    Martin-Magniette, M.-L.3
  • 34
    • 84947788012 scopus 로고    scopus 로고
    • Robust cluster analysis via mixtures of multivariate t-distributions
    • Berlin: Springer
    • McLachlan, G. J., Peel, D.: Robust cluster analysis via mixtures of multivariate t-distributions. In: Lecture Notes in Computer Science, vol. 1451, pp. 658-666. Springer, Berlin (1998).
    • (1998) Lecture Notes in Computer Science , vol.1451 , pp. 658-666
    • McLachlan, G.J.1    Peel, D.2
  • 36
    • 34247855883 scopus 로고    scopus 로고
    • Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution
    • McLachlan, G. J., Bean, R. W., Jones, L. B.-T.: Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution. Comput. Stat. Data Anal. 51(11), 5327-5338 (2007).
    • (2007) Comput. Stat. Data Anal. , vol.51 , Issue.11 , pp. 5327-5338
    • McLachlan, G.J.1    Bean, R.W.2    Jones, L.B.-T.3
  • 37
    • 74149093702 scopus 로고    scopus 로고
    • Model-based classification using latent Gaussian mixture models
    • McNicholas, P. D.: Model-based classification using latent Gaussian mixture models. J. Stat. Plan. Inference 140(5), 1175-1181 (2010).
    • (2010) J. Stat. Plan. Inference , vol.140 , Issue.5 , pp. 1175-1181
    • McNicholas, P.D.1
  • 38
    • 45449088666 scopus 로고    scopus 로고
    • Parsimonious Gaussian mixture models
    • McNicholas, P. D., Murphy, T. B.: Parsimonious Gaussian mixture models. Stat. Comput. 18, 285-296 (2008).
    • (2008) Stat. Comput. , vol.18 , pp. 285-296
    • McNicholas, P.D.1    Murphy, T.B.2
  • 39
    • 77949908759 scopus 로고    scopus 로고
    • Model-based clustering of longitudinal data
    • McNicholas, P. D., Murphy, T. B.: Model-based clustering of longitudinal data. Can. J. Stat. 38(1), 153-168 (2010a).
    • (2010) Can. J. Stat. , vol.38 , Issue.1 , pp. 153-168
    • McNicholas, P.D.1    Murphy, T.B.2
  • 40
    • 77958504829 scopus 로고    scopus 로고
    • Model-based clustering of microarray expression data via latent Gaussian mixture models
    • McNicholas, P. D., Murphy, T. B.: Model-based clustering of microarray expression data via latent Gaussian mixture models. Bioinformatics 26(21), 2705-2712 (2010b).
    • (2010) Bioinformatics , vol.26 , Issue.21 , pp. 2705-2712
    • McNicholas, P.D.1    Murphy, T.B.2
  • 41
    • 70549109507 scopus 로고    scopus 로고
    • Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models
    • McNicholas, P. D., Murphy, T. B., McDaid, A. F., Frost, D.: Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models. Comput. Stat. Data Anal. 54(3), 711-723 (2010).
    • (2010) Comput. Stat. Data Anal. , vol.54 , Issue.3 , pp. 711-723
    • McNicholas, P.D.1    Murphy, T.B.2    McDaid, A.F.3    Frost, D.4
  • 42
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: a general framework
    • Meng, X.-L., Rubin, D. B.: Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267-278 (1993).
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.-L.1    Rubin, D.B.2
  • 43
    • 0001483601 scopus 로고
    • A missing information principle: theory and applications
    • Theory of Statistics, L. M. CamLe, J. Neyman, and E. L. Scott (Eds.), Berkeley: University of California Press
    • Orchard, T., Woodbury, M. A.: A missing information principle: theory and applications. In: Le Cam, L. M., Neyman, J., Scott, E. L. (eds.) Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. Theory of Statistics, vol. 1, pp. 697-715. University of California Press, Berkeley (1972).
    • (1972) Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 697-715
    • Orchard, T.1    Woodbury, M.A.2
  • 44
    • 84855199947 scopus 로고    scopus 로고
    • R Development Core Team, Vienna: R Foundation for Statistical Computing
    • R Development Core Team: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2010).
    • (2010) A Language and Environment for Statistical Computing
  • 45
    • 33645505223 scopus 로고    scopus 로고
    • Variable selection for model-based clustering
    • Raftery, A. E., Dean, N.: Variable selection for model-based clustering. J. Am. Stat. Assoc. 101(473), 168-178 (2006).
    • (2006) J. Am. Stat. Assoc. , vol.101 , Issue.473 , pp. 168-178
    • Raftery, A.E.1    Dean, N.2
  • 46
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W. M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846-850 (1971).
    • (1971) J. Am. Stat. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 47
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461-464 (1978).
    • (1978) Ann. Stat. , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 48
    • 77956881791 scopus 로고    scopus 로고
    • Dimension reduction for model-based clustering
    • Scrucca, L.: Dimension reduction for model-based clustering. Stat. Comput. 20(4), 471-484 (2010).
    • (2010) Stat. Comput. , vol.20 , Issue.4 , pp. 471-484
    • Scrucca, L.1
  • 49
    • 0001953676 scopus 로고
    • Maximum likelihood theory for incomplete data from an exponential family
    • Sundberg, R.: Maximum likelihood theory for incomplete data from an exponential family. Scand. J. Stat. 1, 49-58 (1974).
    • (1974) Scand. J. Stat. , vol.1 , pp. 49-58
    • Sundberg, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.