메뉴 건너뛰기




Volumn 140, Issue 5, 2010, Pages 1175-1181

Model-based classification using latent Gaussian mixture models

Author keywords

Classification; Factor analysis; Food authenticity; Mixture models; Model based classification; Model based clustering; Parsimonious Gaussian mixture models (PGMMs)

Indexed keywords


EID: 74149093702     PISSN: 03783758     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jspi.2009.11.006     Document Type: Article
Times cited : (77)

References (35)
  • 1
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield J.D., and Raftery A.E. Model-based Gaussian and non-Gaussian clustering. Biometrics 49 3 (1993) 803-821
    • (1993) Biometrics , vol.49 , Issue.3 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 2
    • 0030326891 scopus 로고    scopus 로고
    • Regularized gaussian discriminant analysis through eigenvalue decomposition
    • Bensmail H., and Celeux G. Regularized gaussian discriminant analysis through eigenvalue decomposition. Journal of the American Statistical Association 91 (1996) 1743-1748
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 1743-1748
    • Bensmail, H.1    Celeux, G.2
  • 4
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux G., and Govaert G. Gaussian parsimonious clustering models. Pattern Recognition 28 (1995) 781-793
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 6
    • 0032337237 scopus 로고    scopus 로고
    • Detecting features in spatial point processes with clutter via model-based clustering
    • Dasgupta A., and Raftery A.E. Detecting features in spatial point processes with clutter via model-based clustering. Journal of the American Statistical Association 93 (1998) 294-302
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 294-302
    • Dasgupta, A.1    Raftery, A.E.2
  • 7
    • 33645061488 scopus 로고    scopus 로고
    • Using unlabelled data to update classification rules with applications in food authenticity studies
    • Dean N., Murphy T.B., and Downey G. Using unlabelled data to update classification rules with applications in food authenticity studies. Journal of the Royal Statistical Society. Series C 55 1 (2006) 1-14
    • (2006) Journal of the Royal Statistical Society. Series C , vol.55 , Issue.1 , pp. 1-14
    • Dean, N.1    Murphy, T.B.2    Downey, G.3
  • 9
    • 0012996824 scopus 로고
    • Classification of olive oils from their fatty acid composition
    • Martens H., and Russwurm Jr. H. (Eds), Applied Science Publishers, London
    • Forina M., Armanino C., Lanteri S., and Tiscornia E. Classification of olive oils from their fatty acid composition. In: Martens H., and Russwurm Jr. H. (Eds). Food Research and Data Analysis (1983), Applied Science Publishers, London 189-214
    • (1983) Food Research and Data Analysis , pp. 189-214
    • Forina, M.1    Armanino, C.2    Lanteri, S.3    Tiscornia, E.4
  • 10
    • 0000164478 scopus 로고
    • Pattern recognition methods in the prediction of Italian olive oil origin by their fatty acid content
    • Forina M., and Tiscornia E. Pattern recognition methods in the prediction of Italian olive oil origin by their fatty acid content. Annali di Chimica 72 (1982) 143-155
    • (1982) Annali di Chimica , vol.72 , pp. 143-155
    • Forina, M.1    Tiscornia, E.2
  • 11
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering methods? Answers via model-based cluster analysis
    • Fraley C., and Raftery A.E. How many clusters? Which clustering methods? Answers via model-based cluster analysis. The Computer Journal 41 8 (1998) 578-588
    • (1998) The Computer Journal , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 13
    • 0742306126 scopus 로고    scopus 로고
    • Enhanced software for model-based clustering, density estimation, and discriminant analysis: MCLUST
    • Fraley C., and Raftery A.E. Enhanced software for model-based clustering, density estimation, and discriminant analysis: MCLUST. Journal of Classification 20 (2003) 263-286
    • (2003) Journal of Classification , vol.20 , pp. 263-286
    • Fraley, C.1    Raftery, A.E.2
  • 14
    • 34547913193 scopus 로고    scopus 로고
    • MCLUST version 3 for R: Normal mixture modeling and model-based clustering
    • Technical Report 504, Department of Statistics, University of Washington. Minor revisions January 2007 and November
    • Fraley, C., Raftery, A.E., 2006. MCLUST version 3 for R: Normal mixture modeling and model-based clustering. Technical Report 504, Department of Statistics, University of Washington. Minor revisions January 2007 and November 2007.
    • (2006)
    • Fraley, C.1    Raftery, A.E.2
  • 16
    • 0003744821 scopus 로고    scopus 로고
    • The EM algorithm for factor analyzers
    • Technical Report CRG-TR-96-1, University of Toronto
    • Ghahramani, Z., Hinton, G.E., 1997. The EM algorithm for factor analyzers. Technical Report CRG-TR-96-1, University of Toronto.
    • (1997)
    • Ghahramani, Z.1    Hinton, G.E.2
  • 20
    • 0003286354 scopus 로고
    • Mixture models: Theory, geometry and applications
    • Institute of Mathematical Statistics, Hayward, California
    • Lindsay, B.G., 1995. Mixture models: theory, geometry and applications. In: NSF-CBMS Regional Conference Series in Probability and Statistics, vol. 5. Institute of Mathematical Statistics, Hayward, California.
    • (1995) NSF-CBMS Regional Conference Series in Probability and Statistics , vol.5
    • Lindsay, B.G.1
  • 21
    • 1842539381 scopus 로고    scopus 로고
    • Bayesian model assessment in factor analysis
    • Lopes H.F., and West M. Bayesian model assessment in factor analysis. Statistica Sinica 14 (2004) 41-67
    • (2004) Statistica Sinica , vol.14 , pp. 41-67
    • Lopes, H.F.1    West, M.2
  • 25
    • 70649101438 scopus 로고    scopus 로고
    • Parsimonious Gaussian mixture models
    • Technical Report 05/11, Department of Statistics, Trinity College Dublin
    • McNicholas, P.D., Murphy, T.B., 2005. Parsimonious Gaussian mixture models. Technical Report 05/11, Department of Statistics, Trinity College Dublin.
    • (2005)
    • McNicholas, P.D.1    Murphy, T.B.2
  • 27
    • 70549109507 scopus 로고    scopus 로고
    • Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models
    • McNicholas P.D., Murphy T.B., McDaid A.F., and Frost D. Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models. Computational Statistics and Data Analysis 54 (2010) 711-723
    • (2010) Computational Statistics and Data Analysis , vol.54 , pp. 711-723
    • McNicholas, P.D.1    Murphy, T.B.2    McDaid, A.F.3    Frost, D.4
  • 28
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: a general framework
    • Meng X.L., and Rubin D.B. Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80 (1993) 267-278
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 29
    • 18244387717 scopus 로고    scopus 로고
    • The EM algorithm-an old folk-song sung to a fast new tune (with discussion)
    • Meng X.L., and van Dyk D. The EM algorithm-an old folk-song sung to a fast new tune (with discussion). Journal of the Royal Statistical Society. Series B 59 (1997) 511-567
    • (1997) Journal of the Royal Statistical Society. Series B , vol.59 , pp. 511-567
    • Meng, X.L.1    van Dyk, D.2
  • 31
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W.M. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66 (1971) 846-850
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 32
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Annals of Statistics 6 (1978) 31-38
    • (1978) Annals of Statistics , vol.6 , pp. 31-38
    • Schwarz, G.1
  • 33
    • 0002965815 scopus 로고
    • The proof and measurement of association between two things
    • Spearman C. The proof and measurement of association between two things. American Journal of Psychology 15 (1904) 72-101
    • (1904) American Journal of Psychology , vol.15 , pp. 72-101
    • Spearman, C.1
  • 35
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • Tipping T.E., and Bishop C.M. Mixtures of probabilistic principal component analysers. Neural Computation 11 2 (1999) 443-482
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, T.E.1    Bishop, C.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.