메뉴 건너뛰기




Volumn 20, Issue 3, 2010, Pages 343-356

Robust mixture modeling using multivariate skew t distributions

Author keywords

MCEM type algorithms; MSN; MST; Multivariate truncated normal; Multivariate truncated t; Outliers

Indexed keywords


EID: 77749280346     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-009-9128-9     Document Type: Article
Times cited : (207)

References (40)
  • 1
    • 34548253400 scopus 로고    scopus 로고
    • Bayesian inference for skew-normal linear mixed models
    • Arellano-Valle, R. B., Bolfarine, H., Lachos, V. H.: Bayesian inference for skew-normal linear mixed models. J. Appl. Stat. 34, 663-682 (2007).
    • (2007) J. Appl. Stat. , vol.34 , pp. 663-682
    • Arellano-Valle, R.B.1    Bolfarine, H.2    Lachos, V.H.3
  • 2
    • 19744373319 scopus 로고    scopus 로고
    • The skew-normal distribution and related multivariate families (with discussion)
    • Azzalini, A.: The skew-normal distribution and related multivariate families (with discussion). Scand. J. Statist. 32, 159-200 (2005).
    • (2005) Scand. J. Statist. , vol.32 , pp. 159-200
    • Azzalini, A.1
  • 3
    • 0001122047 scopus 로고    scopus 로고
    • Statistical applications of the multivariate skew-normal distribution
    • Azzalini, A., Capitaino, A.: Statistical applications of the multivariate skew-normal distribution. J. R. Stat. Soc. Ser. B 61, 579-602 (1999).
    • (1999) J. R. Stat. Soc. Ser. B , vol.61 , pp. 579-602
    • Azzalini, A.1    Capitaino, A.2
  • 4
    • 0037900005 scopus 로고    scopus 로고
    • Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution
    • Azzalini, A., Capitaino, A.: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc. Ser. B 65, 367-389 (2003).
    • (2003) J. R. Stat. Soc. Ser. B , vol.65 , pp. 367-389
    • Azzalini, A.1    Capitaino, A.2
  • 5
    • 0001417140 scopus 로고    scopus 로고
    • The multivariate skew-normal distribution
    • Azzalini, A., Dalla Valle, A.: The multivariate skew-normal distribution. Biometrika 83, 715-726 (1996).
    • (1996) Biometrika , vol.83 , pp. 715-726
    • Azzalini, A.1    Dalla Valle, A.2
  • 7
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
    • Booth, G. J., Hobert, P. J.: Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J. R. Stat. Soc. Ser. B 61, 265-285 (1999).
    • (1999) J. R. Stat. Soc. Ser. B , vol.61 , pp. 265-285
    • Booth, G.J.1    Hobert, P.J.2
  • 9
    • 33644514005 scopus 로고    scopus 로고
    • Multivariate mixtures of normals with unknown number of components
    • Dellaportas, P., Papageorgiou, I.: Multivariate mixtures of normals with unknown number of components. Stat. Comput. 16, 57-68 (2006).
    • (2006) Stat. Comput. , vol.16 , pp. 57-68
    • Dellaportas, P.1    Papageorgiou, I.2
  • 10
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Dempster, A. P., Laird, N. M., Rubin, D. B.: Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. R. Stat. Soc. Ser. B 39, 1-38 (1977).
    • (1977) J. R. Stat. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 11
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions through Bayesian sampling
    • Diebolt, J., Robert, C. P.: Estimation of finite mixture distributions through Bayesian sampling. J. R. Stat. Soc. Ser. B 56, 363-375 (1994).
    • (1994) J. R. Stat. Soc. Ser. B , vol.56 , pp. 363-375
    • Diebolt, J.1    Robert, C.P.2
  • 12
    • 84950937290 scopus 로고
    • Bayesian density estimation and inference using mixtures
    • Escobar, M. D., West, M.: Bayesian density estimation and inference using mixtures. J. Am. Stat. Assoc. 90, 577-588 (1995).
    • (1995) J. Am. Stat. Assoc. , vol.90 , pp. 577-588
    • Escobar, M.D.1    West, M.2
  • 13
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley, C., Raftery, A. E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41, 578-588 (1998).
    • (1998) Comput. J. , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 14
    • 0035998835 scopus 로고    scopus 로고
    • Model-based clustering, discriminant analysis, and density estimation
    • Fraley, C., Raftery, A. E.: Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97, 611-612 (2002).
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 611-612
    • Fraley, C.1    Raftery, A.E.2
  • 16
    • 0002954754 scopus 로고    scopus 로고
    • Consistent estimation of the order of mixture models
    • Keribin, C.: Consistent estimation of the order of mixture models. Sankhyā Ser. 62, 49-66 (2000).
    • (2000) Sankhyā Ser. , vol.62 , pp. 49-66
    • Keribin, C.1
  • 17
    • 56349112368 scopus 로고    scopus 로고
    • Maximum likelihood estimation for multivariate skew normal mixture models
    • Lin, T. I.: Maximum likelihood estimation for multivariate skew normal mixture models. J. Multivar. Anal. 100, 257-265 (2009).
    • (2009) J. Multivar. Anal. , vol.100 , pp. 257-265
    • Lin, T.I.1
  • 18
    • 34249737344 scopus 로고    scopus 로고
    • Robust mixture modeling using the skew t distribution
    • Lin, T. I., Lee, J. C., Hsieh, W. J.: Robust mixture modeling using the skew t distribution. Stat. Comput. 17, 81-92 (2007a).
    • (2007) Stat. Comput. , vol.17 , pp. 81-92
    • Lin, T.I.1    Lee, J.C.2    Hsieh, W.J.3
  • 19
    • 34249710125 scopus 로고    scopus 로고
    • Finite mixture modelling using the skew normal distribution
    • Lin, T. I., Lee, J. C., Yen, S. Y.: Finite mixture modelling using the skew normal distribution. Stat. Sin. 17, 909-927 (2007b).
    • (2007) Stat. Sin. , vol.17 , pp. 909-927
    • Lin, T.I.1    Lee, J.C.2    Yen, S.Y.3
  • 21
    • 0000315742 scopus 로고
    • The ECME algorithm: A simple extension of EM and ECM with faster monotone convergence
    • Liu, C. H., Rubin, D. B.: The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika 81, 633-648 (1994).
    • (1994) Biometrika , vol.81 , pp. 633-648
    • Liu, C.H.1    Rubin, D.B.2
  • 22
    • 42049123647 scopus 로고    scopus 로고
    • Automated gating of flow cytometry data via robust model-based clustering
    • Lo, K., Brinkman, R. R., Gottardo, R.: Automated gating of flow cytometry data via robust model-based clustering. Cytometry Part A 73, 321-332 (2008).
    • (2008) Cytometry Part A , vol.73 , pp. 321-332
    • Lo, K.1    Brinkman, R.R.2    Gottardo, R.3
  • 23
    • 0001044972 scopus 로고
    • Finding the observed information when using the EM algorithm
    • Louis, T. A.: Finding the observed information when using the EM algorithm. J. R. Stat. Soc. Ser. B 44, 226-232 (1982).
    • (1982) J. R. Stat. Soc. Ser. B , vol.44 , pp. 226-232
    • Louis, T.A.1
  • 24
    • 21344497135 scopus 로고
    • Maximum likelihood variance components estimation for binary data
    • McCulloch, C. E.: Maximum likelihood variance components estimation for binary data. J. Am. Stat. Assoc. 89, 330-335 (1994).
    • (1994) J. Am. Stat. Assoc. , vol.89 , pp. 330-335
    • McCulloch, C.E.1
  • 28
    • 45449088666 scopus 로고    scopus 로고
    • Parsimonious Gaussian mixture models
    • McNicholas, P. D., Murphy, T. B.: Parsimonious Gaussian mixture models. Stat. Comput. 18, 285-296 (2008).
    • (2008) Stat. Comput. , vol.18 , pp. 285-296
    • McNicholas, P.D.1    Murphy, T.B.2
  • 29
    • 0001232538 scopus 로고
    • A fast improvement to the EM algorithm to its own terms
    • Meilijson, I.: A fast improvement to the EM algorithm to its own terms. J. R. Stat. Soc. Ser. B 51, 127-138 (1989).
    • (1989) J. R. Stat. Soc. Ser. B , vol.51 , pp. 127-138
    • Meilijson, I.1
  • 30
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: A general framework
    • Meng, X. L., Rubin, D. B.: Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267-278 (1993).
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 31
    • 33947182532 scopus 로고    scopus 로고
    • Programs in R for computing truncated t distributions
    • Nadarajah, S., Kotz, S.: Programs in R for computing truncated t distributions. Qual. Reliab. Eng. Int. 23, 273-278 (2007).
    • (2007) Qual. Reliab. Eng. Int. , vol.23 , pp. 273-278
    • Nadarajah, S.1    Kotz, S.2
  • 32
    • 0041407143 scopus 로고    scopus 로고
    • Robust Mixture modeling using the t distribution
    • Peel, D., McLachlan, G. J.: Robust Mixture modeling using the t distribution. Stat. Comput. 10, 339-348 (2000).
    • (2000) Stat. Comput. , vol.10 , pp. 339-348
    • Peel, D.1    McLachlan, G.J.2
  • 34
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Redner, R. A., Walker, H. F.: Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26, 195-239 (1984).
    • (1984) SIAM Rev. , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 35
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team, Vienna: R Foundation for Statistical Computing
    • R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2008).
    • (2008) R: A Language and Environment for Statistical Computing
  • 36
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components (with discussion)
    • Richardson, S., Green, P. J.: On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. R. Stat. Soc. Ser. B 59, 731-792 (1997).
    • (1997) J. R. Stat. Soc. Ser. B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 37
    • 0242595939 scopus 로고    scopus 로고
    • A new class of multivariate skew distributions with application to Bayesian regression models
    • Sahu, S. K., Dey, D. K., Branco, M. D.: A new class of multivariate skew distributions with application to Bayesian regression models. Can. J. Stat. 31, 129-150 (2003).
    • (2003) Can. J. Stat. , vol.31 , pp. 129-150
    • Sahu, S.K.1    Dey, D.K.2    Branco, M.D.3
  • 39
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wei, G. C. G., Tanner, M. A.: A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. J. Am. Stat. Assoc. 85, 699-704 (1990).
    • (1990) J. Am. Stat. Assoc. , vol.85 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2
  • 40
    • 4444233747 scopus 로고    scopus 로고
    • Learning a multivariate Gaussian mixture model with the reversible Jump MCMC algorithm
    • Zhang, Z., Chan, K. L., Wu, Y., Cen, C. B.: Learning a multivariate Gaussian mixture model with the reversible Jump MCMC algorithm. Stat. Comput. 14, 343-355 (2004).
    • (2004) Stat. Comput. , vol.14 , pp. 343-355
    • Zhang, Z.1    Chan, K.L.2    Wu, Y.3    Cen, C.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.