메뉴 건너뛰기




Volumn 65, Issue 11-12, 2013, Pages 1533-1555

Preparation of cell-encapsulation devices in confined microenvironment

Author keywords

Alginate; Cell encapsulation; Hydrogels; Microfibers; Microfluidics; Microparticles

Indexed keywords

CELL ENCAPSULATIONS; CELL MICROENCAPSULATION; CELL-BASED THERAPY; CELLULAR PHYSIOLOGY; MICRO-PARTICLES; MICROFIBERS; MICROFLUIDIC-BASED; SURROUNDING ENVIRONMENT;

EID: 84887617169     PISSN: 0169409X     EISSN: 18728294     Source Type: Journal    
DOI: 10.1016/j.addr.2013.07.021     Document Type: Review
Times cited : (63)

References (151)
  • 1
    • 84855822404 scopus 로고    scopus 로고
    • Regenerative medicine strategies
    • Atala A. Regenerative medicine strategies. J. Pediatr. Surg. 2012, 47:17-28.
    • (2012) J. Pediatr. Surg. , vol.47 , pp. 17-28
    • Atala, A.1
  • 2
    • 0027595948 scopus 로고
    • Tissue engineering
    • Langer R., Vacanti J.P. Tissue engineering. Science 1993, 260:920-926.
    • (1993) Science , vol.260 , pp. 920-926
    • Langer, R.1    Vacanti, J.P.2
  • 4
    • 77953682716 scopus 로고    scopus 로고
    • Cell and drug delivery therapeutics for controlled renal parenchyma regeneration
    • Minuth W.W., Denk L., Glashauser A. Cell and drug delivery therapeutics for controlled renal parenchyma regeneration. Adv. Drug Delivery Rev. 2010, 62:841-854.
    • (2010) Adv. Drug Delivery Rev. , vol.62 , pp. 841-854
    • Minuth, W.W.1    Denk, L.2    Glashauser, A.3
  • 5
    • 77953683526 scopus 로고    scopus 로고
    • Genetically modified cells in regenerative medicine and tissue engineering
    • Sheyn D., Mizrahi O., Benjamin S., et al. Genetically modified cells in regenerative medicine and tissue engineering. Adv. Drug Delivery Rev. 2010, 62:683-698.
    • (2010) Adv. Drug Delivery Rev. , vol.62 , pp. 683-698
    • Sheyn, D.1    Mizrahi, O.2    Benjamin, S.3
  • 7
    • 77953883576 scopus 로고    scopus 로고
    • Dental stem cells and tooth banking for regenerative medicine
    • Huang Y., Yang J., Wang C., Lee S.Y. Dental stem cells and tooth banking for regenerative medicine. J. Exp. Clin. Med. 2010, 2:111-117.
    • (2010) J. Exp. Clin. Med. , vol.2 , pp. 111-117
    • Huang, Y.1    Yang, J.2    Wang, C.3    Lee, S.Y.4
  • 8
    • 0034813202 scopus 로고    scopus 로고
    • Bone marrow-derived cells contribute to tumor neovasculature and when modified to express an angiogenesis inhibitor can restrict tumor growth in mice
    • Davidoff A.M., Ng C.C., Brown P., Leary M.A., Spurbeck W.W., Zhou J., Horwitz E., Vanin E.F., Nienhuis A.W. Bone marrow-derived cells contribute to tumor neovasculature and when modified to express an angiogenesis inhibitor can restrict tumor growth in mice. Clin. Cancer Res. 2001, 7:2870-2079.
    • (2001) Clin. Cancer Res. , vol.7 , pp. 2870-2079
    • Davidoff, A.M.1    Ng, C.C.2    Brown, P.3    Leary, M.A.4    Spurbeck, W.W.5    Zhou, J.6    Horwitz, E.7    Vanin, E.F.8    Nienhuis, A.W.9
  • 9
    • 84857099436 scopus 로고    scopus 로고
    • Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases
    • Basta G., Montanucci P., Luca G., Boselli C., Noya G., Barbaro B., Qi M., Kinzer K.P., Oberholzer J., Calafiore R. Long-term metabolic and immunological follow-up of nonimmunosuppressed patients with type 1 diabetes treated with microencapsulated islet allografts: four cases. Diabetes Care 2011, 34:2406-2409.
    • (2011) Diabetes Care , vol.34 , pp. 2406-2409
    • Basta, G.1    Montanucci, P.2    Luca, G.3    Boselli, C.4    Noya, G.5    Barbaro, B.6    Qi, M.7    Kinzer, K.P.8    Oberholzer, J.9    Calafiore, R.10
  • 10
    • 0027327821 scopus 로고
    • Secretion of erythropoietin from microencapsulated rat-kidney cell - preliminary results
    • Koo J., Chang T.M.S. Secretion of erythropoietin from microencapsulated rat-kidney cell - preliminary results. Int. Art Org. 1993, 16:557-560.
    • (1993) Int. Art Org. , vol.16 , pp. 557-560
    • Koo, J.1    Chang, T.M.S.2
  • 11
    • 0034085455 scopus 로고    scopus 로고
    • Expression and secretion of vascular endothelial growth factor-A by cytokine-stimulated hematopoietic progenitor cells: possible role in the hematopoietic microenvironment
    • Bautz F., Rafii S., Kanz L., Mohle R. Expression and secretion of vascular endothelial growth factor-A by cytokine-stimulated hematopoietic progenitor cells: possible role in the hematopoietic microenvironment. Exp. Hematol. 2000, 28:700-7006.
    • (2000) Exp. Hematol. , vol.28 , pp. 700-7006
    • Bautz, F.1    Rafii, S.2    Kanz, L.3    Mohle, R.4
  • 12
    • 0038054469 scopus 로고    scopus 로고
    • Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury
    • Lu P., Jones L.L., Snyder E.Y., Tuszynski M.H. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp. Neurol. 2003, 181:115-129.
    • (2003) Exp. Neurol. , vol.181 , pp. 115-129
    • Lu, P.1    Jones, L.L.2    Snyder, E.Y.3    Tuszynski, M.H.4
  • 14
    • 33845216122 scopus 로고    scopus 로고
    • Cell delivery in regenerative medicine: the cell sheet engineering approach
    • Yang J., Yamato M., Nishida K., et al. Cell delivery in regenerative medicine: the cell sheet engineering approach. J. Control. Release 2006, 116(2):193.
    • (2006) J. Control. Release , vol.116 , Issue.2 , pp. 193
    • Yang, J.1    Yamato, M.2    Nishida, K.3
  • 15
    • 84873741315 scopus 로고    scopus 로고
    • Concise review: tissue-engineered vascular grafts for cardiac surgery: past, present, and future
    • Kurobe H., Maxfield M.W., Breuer C.K., Shinoka T. Concise review: tissue-engineered vascular grafts for cardiac surgery: past, present, and future. Stem Cells Transl. Med. 2012, 1:566-571.
    • (2012) Stem Cells Transl. Med. , vol.1 , pp. 566-571
    • Kurobe, H.1    Maxfield, M.W.2    Breuer, C.K.3    Shinoka, T.4
  • 16
    • 84887394975 scopus 로고    scopus 로고
    • Stem cell-based tissue engineering approaches for musculoskeletal regeneration
    • Brown P.T., Handorf A.M., Jeon W.B., Li W.J. Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr. Pharm. Des. 2013, 19:3429-3445.
    • (2013) Curr. Pharm. Des. , vol.19 , pp. 3429-3445
    • Brown, P.T.1    Handorf, A.M.2    Jeon, W.B.3    Li, W.J.4
  • 17
    • 0029007273 scopus 로고
    • Biomaterials in tissue engineering
    • Hubbel J. Biomaterials in tissue engineering. Nat. Biotechnol. 1995, 13:565-576.
    • (1995) Nat. Biotechnol. , vol.13 , pp. 565-576
    • Hubbel, J.1
  • 18
    • 37049010751 scopus 로고    scopus 로고
    • Challenges and emerging technologies in the immunoisolation of cells and tissues
    • Wilson J.T., Chaikof E.L. Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv. Drug Delivery Rev. 2008, 60:124-145.
    • (2008) Adv. Drug Delivery Rev. , vol.60 , pp. 124-145
    • Wilson, J.T.1    Chaikof, E.L.2
  • 20
    • 2542583879 scopus 로고    scopus 로고
    • Effect of spray-drying on the quality of encapsulated cells of Beijerinckiasp
    • Boza Y., Barbin D., Scamparinia A.R.P. Effect of spray-drying on the quality of encapsulated cells of Beijerinckiasp. Process. Biochem. 2004, 30:1275-1284.
    • (2004) Process. Biochem. , vol.30 , pp. 1275-1284
    • Boza, Y.1    Barbin, D.2    Scamparinia, A.R.P.3
  • 22
    • 0038107445 scopus 로고    scopus 로고
    • Alginate encapsulation of genetically engineered mammalian cells: comparison of production devices, methods and microcapsule characteristics
    • Koch S., Schwinger C., Kressler J., Heinzen Ch., Rainov N.G. Alginate encapsulation of genetically engineered mammalian cells: comparison of production devices, methods and microcapsule characteristics. J. Microencapsul. 2003, 20:303-316.
    • (2003) J. Microencapsul. , vol.20 , pp. 303-316
    • Koch, S.1    Schwinger, C.2    Kressler, J.3    Heinzen, C.4    Rainov, N.G.5
  • 23
    • 0035385135 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering
    • Lee K.Y., Mooney D.J. Hydrogels for tissue engineering. Chem. Rev. 2001, 101:1869-1877.
    • (2001) Chem. Rev. , vol.101 , pp. 1869-1877
    • Lee, K.Y.1    Mooney, D.J.2
  • 24
    • 0035683866 scopus 로고    scopus 로고
    • Hydrogels for biomedical applications
    • Hoffman A.S. Hydrogels for biomedical applications. Ann. N. Y. Acad. Sci. 2002, 200(54):62-73.
    • (2002) Ann. N. Y. Acad. Sci. , vol.200 , Issue.54 , pp. 62-73
    • Hoffman, A.S.1
  • 25
    • 84861714640 scopus 로고    scopus 로고
    • Designing cell-compatible hydrogels for biomedical applications
    • Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science 2012, 1:1124-1128.
    • (2012) Science , vol.1 , pp. 1124-1128
    • Seliktar, D.1
  • 26
    • 0042061223 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering: scaffold design variables and applications
    • Drury J.L., Mooney D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24:4337-4351.
    • (2003) Biomaterials , vol.24 , pp. 4337-4351
    • Drury, J.L.1    Mooney, D.J.2
  • 28
    • 34547120714 scopus 로고    scopus 로고
    • Characterization and inhibition of fibrin hydrogel-degrading enzymes during development of tissue engineering scaffolds
    • Ahmed T.A., Griffith M., Hincke M. Characterization and inhibition of fibrin hydrogel-degrading enzymes during development of tissue engineering scaffolds. Tissue Eng. 2007, 13:1469-1477.
    • (2007) Tissue Eng. , vol.13 , pp. 1469-1477
    • Ahmed, T.A.1    Griffith, M.2    Hincke, M.3
  • 29
    • 0842345370 scopus 로고    scopus 로고
    • Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro
    • Temenoff J.S., Park H., Jabbari E., Conway D.E., Sheffield T.L., Ambrose C.G., Mikos A.G. Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro. Biomacromolecules 2004, 5:5-10.
    • (2004) Biomacromolecules , vol.5 , pp. 5-10
    • Temenoff, J.S.1    Park, H.2    Jabbari, E.3    Conway, D.E.4    Sheffield, T.L.5    Ambrose, C.G.6    Mikos, A.G.7
  • 31
    • 0035889827 scopus 로고    scopus 로고
    • Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering
    • Mann B.K., Gobin A.S., Tsai A.T., Schmedlen R.H., West J.L. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 2001, 22:3045-3051.
    • (2001) Biomaterials , vol.22 , pp. 3045-3051
    • Mann, B.K.1    Gobin, A.S.2    Tsai, A.T.3    Schmedlen, R.H.4    West, J.L.5
  • 32
    • 0344825904 scopus 로고    scopus 로고
    • In vitro cytotoxicity of redox radical initiators for cross-linking of oligo(poly(ethylene glycol) fumarate) macromers
    • Temenoff J.S., Shin H., Conway D.E., Engel P.S., Mikos A.G. In vitro cytotoxicity of redox radical initiators for cross-linking of oligo(poly(ethylene glycol) fumarate) macromers. Biomacromolecules 2003, 4:1605-1613.
    • (2003) Biomacromolecules , vol.4 , pp. 1605-1613
    • Temenoff, J.S.1    Shin, H.2    Conway, D.E.3    Engel, P.S.4    Mikos, A.G.5
  • 33
    • 34249819953 scopus 로고    scopus 로고
    • The extracellular matrix as a biologic scaffold material
    • Badylak S.F. The extracellular matrix as a biologic scaffold material. Biomaterials 2007, 28:3587-3593.
    • (2007) Biomaterials , vol.28 , pp. 3587-3593
    • Badylak, S.F.1
  • 34
    • 0031960548 scopus 로고    scopus 로고
    • Collagen - biomaterial for drug delivery
    • Friess W. Collagen - biomaterial for drug delivery. Eur. J. Pharm. Biopharm. 1998, 45:113-136.
    • (1998) Eur. J. Pharm. Biopharm. , vol.45 , pp. 113-136
    • Friess, W.1
  • 35
    • 10044240601 scopus 로고    scopus 로고
    • Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells
    • Masters K.S., Shah D.N., Leinwand L.A., Anseth K.S. Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells. Biomaterials 2005, 26:2517-2525.
    • (2005) Biomaterials , vol.26 , pp. 2517-2525
    • Masters, K.S.1    Shah, D.N.2    Leinwand, L.A.3    Anseth, K.S.4
  • 36
    • 0037672212 scopus 로고    scopus 로고
    • Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds
    • Semino C.E., Merok J.R., Crane G.G., Panagiotakos G., Zhang S.G. Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation 2003, 71:262-270.
    • (2003) Differentiation , vol.71 , pp. 262-270
    • Semino, C.E.1    Merok, J.R.2    Crane, G.G.3    Panagiotakos, G.4    Zhang, S.G.5
  • 37
    • 24044513316 scopus 로고    scopus 로고
    • Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide
    • Betre H., Ong S.R., Guilak F., Chilkoti A., Fermor B., Setton L.A. Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 2006, 27:91-99.
    • (2006) Biomaterials , vol.27 , pp. 91-99
    • Betre, H.1    Ong, S.R.2    Guilak, F.3    Chilkoti, A.4    Fermor, B.5    Setton, L.A.6
  • 39
    • 82155178131 scopus 로고    scopus 로고
    • Human elastin-derived biomimetic coating surface to support cell growth
    • Bandiera A. Human elastin-derived biomimetic coating surface to support cell growth. Int. J. Biol. Life Sci. 2012, 8:140-144.
    • (2012) Int. J. Biol. Life Sci. , vol.8 , pp. 140-144
    • Bandiera, A.1
  • 40
    • 66249109987 scopus 로고    scopus 로고
    • Chemoattraction of progenitor cells by remodeling extracellular matrix scaffolds
    • Beattie A.J., Gilbert T.W., Guyot J.P., Yates A.J., Badylak S.F. Chemoattraction of progenitor cells by remodeling extracellular matrix scaffolds. Tissue Eng. A 2009, 15:1119-1125.
    • (2009) Tissue Eng. A , vol.15 , pp. 1119-1125
    • Beattie, A.J.1    Gilbert, T.W.2    Guyot, J.P.3    Yates, A.J.4    Badylak, S.F.5
  • 41
    • 33745604988 scopus 로고    scopus 로고
    • Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation
    • Chastain S.R., Kundu A.K., Dhar S., Calvert J.W., Putnam A.J. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J. Biomed. Mater. Res. A 2006, 78:73-85.
    • (2006) J. Biomed. Mater. Res. A , vol.78 , pp. 73-85
    • Chastain, S.R.1    Kundu, A.K.2    Dhar, S.3    Calvert, J.W.4    Putnam, A.J.5
  • 42
    • 56349114812 scopus 로고    scopus 로고
    • Extracellular matrix as a biological scaffold material: structure and function
    • Badylak S.F., Freytes D.O., Gilbert T.W. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009, 5:1-13.
    • (2009) Acta Biomater. , vol.5 , pp. 1-13
    • Badylak, S.F.1    Freytes, D.O.2    Gilbert, T.W.3
  • 43
    • 0032941232 scopus 로고    scopus 로고
    • Alginate hydrogels as synthetic extracellular matrix materials
    • Rowley J.A., Madlambayan G., Mooney D.J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999, 20:45-53.
    • (1999) Biomaterials , vol.20 , pp. 45-53
    • Rowley, J.A.1    Madlambayan, G.2    Mooney, D.J.3
  • 44
    • 0034792454 scopus 로고    scopus 로고
    • Degradation of partially oxidized alginate and its potential application for tissue engineering
    • Bouhadir K.H., Lee K.Y., Alsberg E., Damm K.L., Anderson K.W., Mooney D.J. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 2001, 17:945-950.
    • (2001) Biotechnol. Prog. , vol.17 , pp. 945-950
    • Bouhadir, K.H.1    Lee, K.Y.2    Alsberg, E.3    Damm, K.L.4    Anderson, K.W.5    Mooney, D.J.6
  • 46
    • 84870203532 scopus 로고    scopus 로고
    • Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications
    • Giri T.K., Thakur D., Alexander A., Ajazuddin A., Badwaik H., Tripathi D.K. Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications. Curr. Drug Deliv. 2012, 9:539-555.
    • (2012) Curr. Drug Deliv. , vol.9 , pp. 539-555
    • Giri, T.K.1    Thakur, D.2    Alexander, A.3    Ajazuddin, A.4    Badwaik, H.5    Tripathi, D.K.6
  • 47
    • 0035869827 scopus 로고    scopus 로고
    • Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties
    • Kuo C.K., Ma P.X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 2001, 6:511-521.
    • (2001) Biomaterials , vol.6 , pp. 511-521
    • Kuo, C.K.1    Ma, P.X.2
  • 48
    • 0031081712 scopus 로고    scopus 로고
    • Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules
    • De Vos P., De Haan B.J., Van Schilfgaarde R. Effect of the alginate composition on the biocompatibility of alginate-polylysine microcapsules. Biomaterials 1997, 18:273-278.
    • (1997) Biomaterials , vol.18 , pp. 273-278
    • De Vos, P.1    De Haan, B.J.2    Van Schilfgaarde, R.3
  • 50
    • 33746782944 scopus 로고    scopus 로고
    • Alginate-based microcapsules for immunoisolation of pancreatic islets
    • de Vos P., Faas M.M., Strand B., Calafiore R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 2006, 27:5603-5617.
    • (2006) Biomaterials , vol.27 , pp. 5603-5617
    • de Vos, P.1    Faas, M.M.2    Strand, B.3    Calafiore, R.4
  • 52
    • 0001339567 scopus 로고
    • Chemical structure and physico-chemical properties of agar
    • Lahaye M., Rochas C. Chemical structure and physico-chemical properties of agar. Hydrobiologia 1991, 221:137-148.
    • (1991) Hydrobiologia , vol.221 , pp. 137-148
    • Lahaye, M.1    Rochas, C.2
  • 53
    • 26844557081 scopus 로고    scopus 로고
    • Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury
    • Stokols S., Tuszynski M.H. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 2006, 27:443-451.
    • (2006) Biomaterials , vol.27 , pp. 443-451
    • Stokols, S.1    Tuszynski, M.H.2
  • 54
    • 1242295266 scopus 로고    scopus 로고
    • Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds
    • Awad H.A., Wickham M.Q., Leddy H.A., Gimble J.M., Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 2004, 25:3211-3222.
    • (2004) Biomaterials , vol.25 , pp. 3211-3222
    • Awad, H.A.1    Wickham, M.Q.2    Leddy, H.A.3    Gimble, J.M.4    Guilak, F.5
  • 58
    • 14644446015 scopus 로고    scopus 로고
    • Preparation and properties of PEG hydrogel from PEG macromonomer with sulfonate end group
    • Kim J., Kim J., Kim D., Kim Y.H. Preparation and properties of PEG hydrogel from PEG macromonomer with sulfonate end group. J. Appl. Polym. Sci. 2005, 96:56-61.
    • (2005) J. Appl. Polym. Sci. , vol.96 , pp. 56-61
    • Kim, J.1    Kim, J.2    Kim, D.3    Kim, Y.H.4
  • 59
    • 84864646989 scopus 로고    scopus 로고
    • α(V)β(3) integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug
    • Graf N., Bielenberg D.R., Kolishetti N., Muus C., Banyard J., Farokhzad O.C., Lippard S.J. α(V)β(3) integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano 2012, 6:4530-4539.
    • (2012) ACS Nano , vol.6 , pp. 4530-4539
    • Graf, N.1    Bielenberg, D.R.2    Kolishetti, N.3    Muus, C.4    Banyard, J.5    Farokhzad, O.C.6    Lippard, S.J.7
  • 60
    • 77956036859 scopus 로고    scopus 로고
    • Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives
    • Knop K., Hoogenboom R., Fischer D., Schubert U.S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 2010, 49:6288-6308.
    • (2010) Angew. Chem. Int. Ed. , vol.49 , pp. 6288-6308
    • Knop, K.1    Hoogenboom, R.2    Fischer, D.3    Schubert, U.S.4
  • 61
    • 79956362270 scopus 로고    scopus 로고
    • Encapsulation of eukaryotic cells in alginate microparticles: cell signaling by TNF-alpha through capsular structure of cystic fibrosis cells
    • Mazzitelli S., Borgatti M., Breveglieri G., Gambari R., Nastruzzi C. Encapsulation of eukaryotic cells in alginate microparticles: cell signaling by TNF-alpha through capsular structure of cystic fibrosis cells. J. Cell Commn. Signal 2011, 5:157-165.
    • (2011) J. Cell Commn. Signal , vol.5 , pp. 157-165
    • Mazzitelli, S.1    Borgatti, M.2    Breveglieri, G.3    Gambari, R.4    Nastruzzi, C.5
  • 62
    • 80052268464 scopus 로고    scopus 로고
    • Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels
    • Nafea E.F., Marson A., Poole-Warren L.A., Martens P.J. Immunoisolating semi-permeable membranes for cell encapsulation: focus on hydrogels. J. Control Rel. 2011, 154:110-122.
    • (2011) J. Control Rel. , vol.154 , pp. 110-122
    • Nafea, E.F.1    Marson, A.2    Poole-Warren, L.A.3    Martens, P.J.4
  • 66
    • 33646371243 scopus 로고    scopus 로고
    • Biocompatibility of alginate-poly-l-lysine microcapsules for cell therapy
    • Orive G., Tam S.K., Pedraz J.L., Hallè J.P. Biocompatibility of alginate-poly-l-lysine microcapsules for cell therapy. Biomaterials 2006, 27:3691-3700.
    • (2006) Biomaterials , vol.27 , pp. 3691-3700
    • Orive, G.1    Tam, S.K.2    Pedraz, J.L.3    Hallè, J.P.4
  • 67
    • 79953184652 scopus 로고    scopus 로고
    • Microencapsulation: a promising technique for controlled drug delivery
    • Singh M.N., Hemant K.S.Y., Ram M., Shivakumar H.G. Microencapsulation: a promising technique for controlled drug delivery. Res. Pharm. Sci. 2010, 5:65-77.
    • (2010) Res. Pharm. Sci. , vol.5 , pp. 65-77
    • Singh, M.N.1    Hemant, K.S.Y.2    Ram, M.3    Shivakumar, H.G.4
  • 70
    • 77950860379 scopus 로고    scopus 로고
    • Fabrication of monodisperse, large-sized, functional biopolymeric microspheres using a low-cost and facile microfluidic device
    • Zhu L., Li Y., Zhang Q. Fabrication of monodisperse, large-sized, functional biopolymeric microspheres using a low-cost and facile microfluidic device. Biomed. Microdevices 2010, 12:169-177.
    • (2010) Biomed. Microdevices , vol.12 , pp. 169-177
    • Zhu, L.1    Li, Y.2    Zhang, Q.3
  • 71
    • 2542479139 scopus 로고    scopus 로고
    • Characterization of spontaneous transformation based droplet formation during microchannel emulsification
    • Nisisako T., Torii T., Higuchi T. Characterization of spontaneous transformation based droplet formation during microchannel emulsification. Chem. Eng. J. 2004, 101:23-29.
    • (2004) Chem. Eng. J. , vol.101 , pp. 23-29
    • Nisisako, T.1    Torii, T.2    Higuchi, T.3
  • 73
    • 33745512962 scopus 로고    scopus 로고
    • Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles
    • Huang K.S., Lai T.H., Lin Y.C. Manipulating the generation of Ca-alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Lab Chip 2006, 6:954-957.
    • (2006) Lab Chip , vol.6 , pp. 954-957
    • Huang, K.S.1    Lai, T.H.2    Lin, Y.C.3
  • 76
    • 15844392396 scopus 로고    scopus 로고
    • Controlled synthesis of nonspherical microparticles using microfluidics
    • Dendukuri D., Tsoi K., Hatton T.A., Doyle P.S. Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 2005, 21:2113-2116.
    • (2005) Langmuir , vol.21 , pp. 2113-2116
    • Dendukuri, D.1    Tsoi, K.2    Hatton, T.A.3    Doyle, P.S.4
  • 77
    • 34147124963 scopus 로고    scopus 로고
    • Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip
    • Yang C.H., Huang K.S., Chang J.Y. Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip. Biomed. Microdevices 2007, 9:253-259.
    • (2007) Biomed. Microdevices , vol.9 , pp. 253-259
    • Yang, C.H.1    Huang, K.S.2    Chang, J.Y.3
  • 78
    • 47349107407 scopus 로고    scopus 로고
    • Biopolymer microparticle and nanoparticle formation within a microfluidic device
    • Rondeau E., Cooper-White J. Biopolymer microparticle and nanoparticle formation within a microfluidic device. Langmuir 2008, 24:6937-6945.
    • (2008) Langmuir , vol.24 , pp. 6937-6945
    • Rondeau, E.1    Cooper-White, J.2
  • 79
    • 74949103657 scopus 로고    scopus 로고
    • Oil-free generation of small polymeric particles using a coaxial microfluidic channel
    • Shin S., Hong J.S., Lee K.H., Lee S.H. Oil-free generation of small polymeric particles using a coaxial microfluidic channel. Langmuir 2009, 25:12361-12366.
    • (2009) Langmuir , vol.25 , pp. 12361-12366
    • Shin, S.1    Hong, J.S.2    Lee, K.H.3    Lee, S.H.4
  • 80
    • 77954970051 scopus 로고    scopus 로고
    • Dynamics of microfluidic droplets
    • Baroud C.N., Gallaire F., Dangla R. Dynamics of microfluidic droplets. Lab Chip 2010, 10:2032-2045.
    • (2010) Lab Chip , vol.10 , pp. 2032-2045
    • Baroud, C.N.1    Gallaire, F.2    Dangla, R.3
  • 81
    • 84863227321 scopus 로고    scopus 로고
    • Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking
    • Hu Y., Wang Q., Wang J., Zhu J., Wang H., Yang Y. Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking. Biomicrofluidics 2012, 6:026502.
    • (2012) Biomicrofluidics , vol.6 , pp. 026502
    • Hu, Y.1    Wang, Q.2    Wang, J.3    Zhu, J.4    Wang, H.5    Yang, Y.6
  • 82
    • 2542479139 scopus 로고    scopus 로고
    • Novel microreactors for functional polymer beads
    • Nisisako T., Torii T., Higuchi T. Novel microreactors for functional polymer beads. Chem. Eng. J. 2004, 101:23-29.
    • (2004) Chem. Eng. J. , vol.101 , pp. 23-29
    • Nisisako, T.1    Torii, T.2    Higuchi, T.3
  • 83
    • 70349659816 scopus 로고    scopus 로고
    • Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation
    • Zhao L.B., Pan L., Zhang K., Guo S.S., Liu W., Wang Y., Chen Y., Zhao X.Z., Chan H.L.W. Generation of Janus alginate hydrogel particles with magnetic anisotropy for cell encapsulation. Lab Chip 2009, 9:2981-2986.
    • (2009) Lab Chip , vol.9 , pp. 2981-2986
    • Zhao, L.B.1    Pan, L.2    Zhang, K.3    Guo, S.S.4    Liu, W.5    Wang, Y.6    Chen, Y.7    Zhao, X.Z.8    Chan, H.L.W.9
  • 84
    • 0037151504 scopus 로고    scopus 로고
    • Production of alginate microspheres by internal gelation using an emulsification method
    • Chan L.W., Lee H.Y., Heng P.W.S. Production of alginate microspheres by internal gelation using an emulsification method. Int. J. Pharm. 2002, 242:259-262.
    • (2002) Int. J. Pharm. , vol.242 , pp. 259-262
    • Chan, L.W.1    Lee, H.Y.2    Heng, P.W.S.3
  • 85
    • 31344436493 scopus 로고    scopus 로고
    • Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system
    • Chan L.W., Lee H.Y., Heng P.W.S. Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohydr. Polym. 2006, 63:176-187.
    • (2006) Carbohydr. Polym. , vol.63 , pp. 176-187
    • Chan, L.W.1    Lee, H.Y.2    Heng, P.W.S.3
  • 86
    • 38049105986 scopus 로고    scopus 로고
    • Transition from squeezing to dripping in a microfluidic T-shaped junction
    • de Menech M., Garstecki P., Jousse F., Stone H.A. Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 2008, 595:141-161.
    • (2008) J. Fluid Mech. , vol.595 , pp. 141-161
    • de Menech, M.1    Garstecki, P.2    Jousse, F.3    Stone, H.A.4
  • 87
    • 84856637751 scopus 로고    scopus 로고
    • Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations
    • Glawdel T., Elbuken C., Ren C.L. Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations. Phys. Rev. E 2012, 85:16322-16329.
    • (2012) Phys. Rev. E , vol.85 , pp. 16322-16329
    • Glawdel, T.1    Elbuken, C.2    Ren, C.L.3
  • 88
    • 65449181105 scopus 로고    scopus 로고
    • Droplet formation and stability of flows in a microfluidic T-junction
    • Gupta A., Murshed S.M.S., Kumar R. Droplet formation and stability of flows in a microfluidic T-junction. Appl. Phys. Lett. 2009, 94:164107-164110.
    • (2009) Appl. Phys. Lett. , vol.94 , pp. 164107-164110
    • Gupta, A.1    Murshed, S.M.S.2    Kumar, R.3
  • 89
    • 84878556490 scopus 로고    scopus 로고
    • New regime of droplet generation in a T-shape microfluidic junction
    • Tarchichi N., Chollet F., Manceau J.F. New regime of droplet generation in a T-shape microfluidic junction. Microfluidics Nanofluidics 2013, 14:45-51.
    • (2013) Microfluidics Nanofluidics , vol.14 , pp. 45-51
    • Tarchichi, N.1    Chollet, F.2    Manceau, J.F.3
  • 90
    • 77950821198 scopus 로고    scopus 로고
    • A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips
    • Zhang M., Wu J., Wang L., Xiao K., Wen W. A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips. Lab Chip 2010, 10:1199-1203.
    • (2010) Lab Chip , vol.10 , pp. 1199-1203
    • Zhang, M.1    Wu, J.2    Wang, L.3    Xiao, K.4    Wen, W.5
  • 91
    • 35649016583 scopus 로고    scopus 로고
    • Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device
    • Choi C., Jung J., Rhee Y.W., Kim D., Shim S., Lee C. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed. Microdevices 2007, 9:855-862.
    • (2007) Biomed. Microdevices , vol.9 , pp. 855-862
    • Choi, C.1    Jung, J.2    Rhee, Y.W.3    Kim, D.4    Shim, S.5    Lee, C.6
  • 92
    • 34748901356 scopus 로고    scopus 로고
    • Monodisperse alginate hydrogel microbeads for cell encapsulation
    • Tan W., Takeuchi S. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater. 2007, 19:2696-2701.
    • (2007) Adv. Mater. , vol.19 , pp. 2696-2701
    • Tan, W.1    Takeuchi, S.2
  • 93
    • 41149121698 scopus 로고    scopus 로고
    • Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology
    • Capretto L., Mazzitelli S., Balestra C., Tosi A., Nastruzzi C. Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology. Lab Chip 2008, 8:617-621.
    • (2008) Lab Chip , vol.8 , pp. 617-621
    • Capretto, L.1    Mazzitelli, S.2    Balestra, C.3    Tosi, A.4    Nastruzzi, C.5
  • 94
    • 72049096369 scopus 로고    scopus 로고
    • Preparation and characterization of polysaccharidic microbeads by a microfluidic technique: application to the encapsulation of Sertoli cells
    • Capretto L., Mazzitelli S., Luca G., Nastruzzi C. Preparation and characterization of polysaccharidic microbeads by a microfluidic technique: application to the encapsulation of Sertoli cells. Acta Biomater. 2010, 6:429-435.
    • (2010) Acta Biomater. , vol.6 , pp. 429-435
    • Capretto, L.1    Mazzitelli, S.2    Luca, G.3    Nastruzzi, C.4
  • 95
    • 50649124464 scopus 로고    scopus 로고
    • Continuous generation of hydrogel beads and encapsulation of biological materials using a microfluidic droplet-merging channel
    • Um E., Lee D., Pyo H., Park J. Continuous generation of hydrogel beads and encapsulation of biological materials using a microfluidic droplet-merging channel. Microfluid. Nanofluid. 2008, 5:541-549.
    • (2008) Microfluid. Nanofluid. , vol.5 , pp. 541-549
    • Um, E.1    Lee, D.2    Pyo, H.3    Park, J.4
  • 96
    • 77953616194 scopus 로고    scopus 로고
    • Development of microfluidic alginate microbead generator unable by pulsed airflow injection for the microencapsulation of cells
    • Wu M., Pan W. Development of microfluidic alginate microbead generator unable by pulsed airflow injection for the microencapsulation of cells. Microfluid. Nanofluid. 2010, 8:823-835.
    • (2010) Microfluid. Nanofluid. , vol.8 , pp. 823-835
    • Wu, M.1    Pan, W.2
  • 97
    • 77950280317 scopus 로고    scopus 로고
    • Bio-electrospraying and droplet-based microfluidics: control of cell numbers within living residues
    • Hong J., De Mello A.J., Jayasinghe S. Bio-electrospraying and droplet-based microfluidics: control of cell numbers within living residues. Biomed. Mater. 2010, 5:21001-21006.
    • (2010) Biomed. Mater. , vol.5 , pp. 21001-21006
    • Hong, J.1    De Mello, A.J.2    Jayasinghe, S.3
  • 100
    • 57349140325 scopus 로고    scopus 로고
    • Microfluidic chip-based synthesis of alginate microspheres for encapsulation of immortalized human cells
    • Workman V.L., Dunnett S.B., Kille P., Palmer D.D. Microfluidic chip-based synthesis of alginate microspheres for encapsulation of immortalized human cells. Biomicrofluidics 2007, 1:014105.
    • (2007) Biomicrofluidics , vol.1 , pp. 014105
    • Workman, V.L.1    Dunnett, S.B.2    Kille, P.3    Palmer, D.D.4
  • 101
    • 38649129738 scopus 로고    scopus 로고
    • On-chip alginate microencapsulation of functional cells
    • On-chip alginate microencapsulation of functional cells. Macromol. Rapid Commun. 2008, 29:165-170.
    • (2008) Macromol. Rapid Commun. , vol.29 , pp. 165-170
  • 102
    • 43449117216 scopus 로고    scopus 로고
    • Spherical and cylindrical microencapsulation of living cells using microfluidic devices
    • Hong J.S., Shin S.J., Lee S., Wong E., Cooper-White J. Spherical and cylindrical microencapsulation of living cells using microfluidic devices. Korea-Aust. Rheol. J. 2007, 19:157-164.
    • (2007) Korea-Aust. Rheol. J. , vol.19 , pp. 157-164
    • Hong, J.S.1    Shin, S.J.2    Lee, S.3    Wong, E.4    Cooper-White, J.5
  • 103
    • 65349196129 scopus 로고    scopus 로고
    • Rapid exchange of oil-phase in microencapsulation chip to enhance cell viability
    • Kim C., Lee K.S., Kim Y.E., Lee K., Lee S.H., Kim T.S., Kang J.Y. Rapid exchange of oil-phase in microencapsulation chip to enhance cell viability. Lab Chip 2009, 9:1294-1297.
    • (2009) Lab Chip , vol.9 , pp. 1294-1297
    • Kim, C.1    Lee, K.S.2    Kim, Y.E.3    Lee, K.4    Lee, S.H.5    Kim, T.S.6    Kang, J.Y.7
  • 104
    • 78650394400 scopus 로고    scopus 로고
    • Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid
    • Kim C., Chung S., Kim Y.E., Lee K., Lee S.H., Oh k.W., Kang J.Y., Kang J.Y. Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid. Lab Chip 2011, 11:246-252.
    • (2011) Lab Chip , vol.11 , pp. 246-252
    • Kim, C.1    Chung, S.2    Kim, Y.E.3    Lee, K.4    Lee, S.H.5    Oh, K.6    Kang, J.Y.7    Kang, J.Y.8
  • 105
    • 77956102001 scopus 로고    scopus 로고
    • Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing
    • Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Lab Chip 2010, 10:2424-2432.
    • (2010) Lab Chip , vol.10 , pp. 2424-2432
  • 107
    • 69549108398 scopus 로고    scopus 로고
    • Monodisperse semi-permeable microcapsules for continuous observation of cells
    • Morimoto Y., Tan W., Tsuda Y., Takeuchi S. Monodisperse semi-permeable microcapsules for continuous observation of cells. Lab Chip 2009, 9:2217-2223.
    • (2009) Lab Chip , vol.9 , pp. 2217-2223
    • Morimoto, Y.1    Tan, W.2    Tsuda, Y.3    Takeuchi, S.4
  • 108
    • 84863764447 scopus 로고    scopus 로고
    • A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles
    • Martinez C.J., Kim J.W., Ye C., Ortiz I., Rowat A.C., Marquez M., Weitz D. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles. Macromol. Biosci. 2012, 12:946-951.
    • (2012) Macromol. Biosci. , vol.12 , pp. 946-951
    • Martinez, C.J.1    Kim, J.W.2    Ye, C.3    Ortiz, I.4    Rowat, A.C.5    Marquez, M.6    Weitz, D.7
  • 109
    • 0024294148 scopus 로고
    • High-performance liquid chromatography of proteins on compressed, non-porous agarose beads: I. Hydrophobic-interaction chromatography
    • Hjerten S., Liao J.L. High-performance liquid chromatography of proteins on compressed, non-porous agarose beads: I. Hydrophobic-interaction chromatography. J. Chromatogr. 1988, 457:165-174.
    • (1988) J. Chromatogr. , vol.457 , pp. 165-174
    • Hjerten, S.1    Liao, J.L.2
  • 110
    • 0034061443 scopus 로고    scopus 로고
    • Effect of an immobilization matrix and capsule membrane permeability on the viability of encapsulated HEK cells
    • Lahooti S., Sefton M.V. Effect of an immobilization matrix and capsule membrane permeability on the viability of encapsulated HEK cells. Biomaterials 2000, 21(10):987-995.
    • (2000) Biomaterials , vol.21 , Issue.10 , pp. 987-995
    • Lahooti, S.1    Sefton, M.V.2
  • 113
    • 14844297001 scopus 로고    scopus 로고
    • Development of mammalian cell-enclosing subsieve-size agarose capsules (<100mm) for cell therapy
    • Sakai S., Kawabata K., Ono T., Ijima H., Kawakami K. Development of mammalian cell-enclosing subsieve-size agarose capsules (<100mm) for cell therapy. Biomaterials 2005, 26:4786-4792.
    • (2005) Biomaterials , vol.26 , pp. 4786-4792
    • Sakai, S.1    Kawabata, K.2    Ono, T.3    Ijima, H.4    Kawakami, K.5
  • 114
    • 70249122762 scopus 로고    scopus 로고
    • Cell encapsules with tunable transport and mechanical properties
    • Luo D., RaoPullela S., Marquez M., Cheng Z. Cell encapsules with tunable transport and mechanical properties. Biomicrofluidcs 2007, 1:034102.
    • (2007) Biomicrofluidcs , vol.1 , pp. 034102
    • Luo, D.1    RaoPullela, S.2    Marquez, M.3    Cheng, Z.4
  • 115
    • 79955614470 scopus 로고    scopus 로고
    • Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation
    • Eun Y.J., Utada A.S., Copeland M.F., Takeuchi S., Weibel D.B. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chem. Biol. 2011, 6:260-266.
    • (2011) ACS Chem. Biol. , vol.6 , pp. 260-266
    • Eun, Y.J.1    Utada, A.S.2    Copeland, M.F.3    Takeuchi, S.4    Weibel, D.B.5
  • 116
    • 78650271558 scopus 로고    scopus 로고
    • High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation
    • Kumachev A., Greener T., Tumarkin E., Eiser E., Zandstra P.W., Kumacheva E. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials 2011, 32:1477-1483.
    • (2011) Biomaterials , vol.32 , pp. 1477-1483
    • Kumachev, A.1    Greener, T.2    Tumarkin, E.3    Eiser, E.4    Zandstra, P.W.5    Kumacheva, E.6
  • 118
    • 79953272005 scopus 로고    scopus 로고
    • Cell-enclosing gelatin-based microcapsule production for tissue engineering using a microfluidic flow-focusing system
    • Sakai S., Ito S., Inagaki H., Hirose K., Matsuyama T., Taya M., Kawakami K. Cell-enclosing gelatin-based microcapsule production for tissue engineering using a microfluidic flow-focusing system. Biomicrofluidics 2011, 5:013402.
    • (2011) Biomicrofluidics , vol.5 , pp. 013402
    • Sakai, S.1    Ito, S.2    Inagaki, H.3    Hirose, K.4    Matsuyama, T.5    Taya, M.6    Kawakami, K.7
  • 119
    • 83455263804 scopus 로고    scopus 로고
    • Microfluidic production of monodisperse biopolymer particles with reproducible morphology by kinetic control
    • Wassen S., Rondeau E., Sott K., Loren N., Fischer P., Hermansson A. Microfluidic production of monodisperse biopolymer particles with reproducible morphology by kinetic control. Food Hydrocolloids 2012, 28:20-27.
    • (2012) Food Hydrocolloids , vol.28 , pp. 20-27
    • Wassen, S.1    Rondeau, E.2    Sott, K.3    Loren, N.4    Fischer, P.5    Hermansson, A.6
  • 120
    • 84874004983 scopus 로고    scopus 로고
    • Calcium cation triggers and accelerates the gelation of high methoxy pectin
    • Yang Y., Zhang G., Hong Y., Gu Z., Fang F. Calcium cation triggers and accelerates the gelation of high methoxy pectin. Food Hydrocolloids 2013, 32:228-234.
    • (2013) Food Hydrocolloids , vol.32 , pp. 228-234
    • Yang, Y.1    Zhang, G.2    Hong, Y.3    Gu, Z.4    Fang, F.5
  • 121
    • 84870941639 scopus 로고    scopus 로고
    • Microfluidic fabrication of self-assembled peptide-polysaccharide microcapsules as 3D environments for cell culture
    • Mendes A., Baran E.T., Lisboa P., Reis R.L., Azevedo H.S. Microfluidic fabrication of self-assembled peptide-polysaccharide microcapsules as 3D environments for cell culture. Biomacromolecules 2012, 13:4039-4048.
    • (2012) Biomacromolecules , vol.13 , pp. 4039-4048
    • Mendes, A.1    Baran, E.T.2    Lisboa, P.3    Reis, R.L.4    Azevedo, H.S.5
  • 123
    • 84862778706 scopus 로고    scopus 로고
    • Preparation of monodisperse PEG hydrogel microparticles using a microfluidic flow-focusing device
    • Dang T., Kim Y., Kim H.G., Kim G.M. Preparation of monodisperse PEG hydrogel microparticles using a microfluidic flow-focusing device. J. Ind. Eng. Chem. 2012, 18:1308-1313.
    • (2012) J. Ind. Eng. Chem. , vol.18 , pp. 1308-1313
    • Dang, T.1    Kim, Y.2    Kim, H.G.3    Kim, G.M.4
  • 126
    • 77954386269 scopus 로고    scopus 로고
    • The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts
    • Caves J.M., Kumar V.A., Martinez A.W., Ripberger C.M., Haller C.A., Chaikof E.L. The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials 2010, 31:7175-7182.
    • (2010) Biomaterials , vol.31 , pp. 7175-7182
    • Caves, J.M.1    Kumar, V.A.2    Martinez, A.W.3    Ripberger, C.M.4    Haller, C.A.5    Chaikof, E.L.6
  • 127
    • 74449085339 scopus 로고    scopus 로고
    • Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration
    • Madduri S., Papaloïzos M., Gander B. Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration. Biomaterials 2010, 31:2323-2334.
    • (2010) Biomaterials , vol.31 , pp. 2323-2334
    • Madduri, S.1    Papaloïzos, M.2    Gander, B.3
  • 128
    • 42949089820 scopus 로고    scopus 로고
    • Controlled formation of biological tubule systems in extracellular matrix gels in vitro
    • Schumacher K.M., Phua S.C., Schumacher A., Ying J.Y. Controlled formation of biological tubule systems in extracellular matrix gels in vitro. Kidney Int. 2008, 73:1187-1192.
    • (2008) Kidney Int. , vol.73 , pp. 1187-1192
    • Schumacher, K.M.1    Phua, S.C.2    Schumacher, A.3    Ying, J.Y.4
  • 129
    • 77955661335 scopus 로고    scopus 로고
    • Alginate/starch blend fibers and their properties for drug controlled release
    • Wang Q., Hub X., Du Y., Kennedy J.F. Alginate/starch blend fibers and their properties for drug controlled release. Carbohydr. Polym. 2010, 82:842-847.
    • (2010) Carbohydr. Polym. , vol.82 , pp. 842-847
    • Wang, Q.1    Hub, X.2    Du, Y.3    Kennedy, J.F.4
  • 130
    • 10644275312 scopus 로고    scopus 로고
    • Electrospun dual-porosity structure and biodegradation morphology of montmorillonite reinforced PLLA nanocomposite scaffolds
    • Lee Y.H., Lee J.H., An I.G., Lee D.S., Lee Y.K., Nam D.J. Electrospun dual-porosity structure and biodegradation morphology of montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials 2005, 26:3165-3172.
    • (2005) Biomaterials , vol.26 , pp. 3165-3172
    • Lee, Y.H.1    Lee, J.H.2    An, I.G.3    Lee, D.S.4    Lee, Y.K.5    Nam, D.J.6
  • 131
    • 42949083290 scopus 로고    scopus 로고
    • Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field
    • Chevalier E., Chulia D., Pouget C., Viana M. Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field. J. Pharm. Sci. 2008, 97:1135-1154.
    • (2008) J. Pharm. Sci. , vol.97 , pp. 1135-1154
    • Chevalier, E.1    Chulia, D.2    Pouget, C.3    Viana, M.4
  • 132
    • 0037409864 scopus 로고    scopus 로고
    • Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs
    • Leong K.F., Cheah C.M., Chua C.K. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 2003, 24:2363-2378.
    • (2003) Biomaterials , vol.24 , pp. 2363-2378
    • Leong, K.F.1    Cheah, C.M.2    Chua, C.K.3
  • 133
    • 62649109838 scopus 로고    scopus 로고
    • Generation of alginate microfibers with a roller-assisted microfluidic system
    • Su J., Zheng Y., Wu H. Generation of alginate microfibers with a roller-assisted microfluidic system. Lab Chip 2009, 9:996-1001.
    • (2009) Lab Chip , vol.9 , pp. 996-1001
    • Su, J.1    Zheng, Y.2    Wu, H.3
  • 135
    • 67649939195 scopus 로고    scopus 로고
    • Synthesis of cell-laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications
    • Lee K.H., Shin S.J., Park Y.D., Lee S.H. Synthesis of cell-laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications. Small 2009, 5:1264-1268.
    • (2009) Small , vol.5 , pp. 1264-1268
    • Lee, K.H.1    Shin, S.J.2    Park, Y.D.3    Lee, S.H.4
  • 137
    • 33244480592 scopus 로고    scopus 로고
    • Microfluidic alignment of collagen fibers for in vitro cell culture
    • Lee P., Lin R., Moon J., Lee L.P. Microfluidic alignment of collagen fibers for in vitro cell culture. Biomed. Microdevices 2006, 8:35-41.
    • (2006) Biomed. Microdevices , vol.8 , pp. 35-41
    • Lee, P.1    Lin, R.2    Moon, J.3    Lee, L.P.4
  • 138
    • 84859073152 scopus 로고    scopus 로고
    • Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture
    • Lin Y., Huang K., Yang C., Wang C., Yang Y., Hsu H., Liao Y., Tsai C. Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture. PLoS One 2012, 7:e33184-e33188.
    • (2012) PLoS One , vol.7
    • Lin, Y.1    Huang, K.2    Yang, C.3    Wang, C.4    Yang, Y.5    Hsu, H.6    Liao, Y.7    Tsai, C.8
  • 139
    • 0042171564 scopus 로고    scopus 로고
    • Multifunctional microcapsules for pancreatic islet cell entrapment: design, preparation and in vitro characterization
    • Luca G., Basta G., Calafiore R., Rossi C., Giovagnoli S., Esposito E., Nastruzzi C. Multifunctional microcapsules for pancreatic islet cell entrapment: design, preparation and in vitro characterization. Biomaterials 2003, 24:3101-3114.
    • (2003) Biomaterials , vol.24 , pp. 3101-3114
    • Luca, G.1    Basta, G.2    Calafiore, R.3    Rossi, C.4    Giovagnoli, S.5    Esposito, E.6    Nastruzzi, C.7
  • 140
    • 79955449302 scopus 로고    scopus 로고
    • Optimised production of multifunctional microfibers by microfluidic chip technology for tissue engineering applications
    • Mazzitelli S., Capretto L., Carugo D., Zhang X., Piva R., Nastruzzi C. Optimised production of multifunctional microfibers by microfluidic chip technology for tissue engineering applications. Lab Chip 2011, 11:1776-1785.
    • (2011) Lab Chip , vol.11 , pp. 1776-1785
    • Mazzitelli, S.1    Capretto, L.2    Carugo, D.3    Zhang, X.4    Piva, R.5    Nastruzzi, C.6
  • 141
    • 84866169463 scopus 로고    scopus 로고
    • Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions
    • Yamada M., Utoh R., Ohashi K., Tatsumi K., Yamato M., Okano T., Seki M. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials 2012, 33:8304-8315.
    • (2012) Biomaterials , vol.33 , pp. 8304-8315
    • Yamada, M.1    Utoh, R.2    Ohashi, K.3    Tatsumi, K.4    Yamato, M.5    Okano, T.6    Seki, M.7
  • 142
    • 77954136908 scopus 로고    scopus 로고
    • Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles
    • Kang E., Shin S., Lee K.H., Lee S.H. Novel PDMS cylindrical channels that generate coaxial flow, and application to fabrication of microfibers and particles. Lab Chip 2010, 10:1856-1861.
    • (2010) Lab Chip , vol.10 , pp. 1856-1861
    • Kang, E.1    Shin, S.2    Lee, K.H.3    Lee, S.H.4
  • 143
    • 84864678930 scopus 로고    scopus 로고
    • Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds
    • Kang E., Choi Y.Y., Chae S., Moon J., Chang J., Lee S. Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Adv. Mater. 2012, 24:4271-4277.
    • (2012) Adv. Mater. , vol.24 , pp. 4271-4277
    • Kang, E.1    Choi, Y.Y.2    Chae, S.3    Moon, J.4    Chang, J.5    Lee, S.6
  • 144
    • 47349091321 scopus 로고    scopus 로고
    • Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering
    • Hwang C.M., Khademhosseini A., Park Y., Sun K., Lee S.H. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering. Langmuir 2008, 24:6845-6851.
    • (2008) Langmuir , vol.24 , pp. 6845-6851
    • Hwang, C.M.1    Khademhosseini, A.2    Park, Y.3    Sun, K.4    Lee, S.H.5
  • 148
    • 77956116033 scopus 로고    scopus 로고
    • Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening
    • Chen M.C.W., Gupta M., Cheung K.C. Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Biomed. Microdevices 2010, 12:647-654.
    • (2010) Biomed. Microdevices , vol.12 , pp. 647-654
    • Chen, M.C.W.1    Gupta, M.2    Cheung, K.C.3
  • 149
    • 84859320461 scopus 로고    scopus 로고
    • Rapid and cost-effective fabrication of selectively permeable calcium-alginate microfluidic device using "modified" embedded template method
    • Asthana A., Lee K.H., Kim K., Kim D., Kim D. Rapid and cost-effective fabrication of selectively permeable calcium-alginate microfluidic device using "modified" embedded template method. Biomicrofluidics 2012, 6:012821.
    • (2012) Biomicrofluidics , vol.6 , pp. 012821
    • Asthana, A.1    Lee, K.H.2    Kim, K.3    Kim, D.4    Kim, D.5
  • 150
    • 69549083518 scopus 로고    scopus 로고
    • A polyethylene glycol (PEG) microfluidic chip with nanostructures for bacteria rapid patterning and detection
    • Yu J., Liu Z., Liu Q., Tai Yuen K., Mak A.F.T., Yang M., Leung P. A polyethylene glycol (PEG) microfluidic chip with nanostructures for bacteria rapid patterning and detection. Sensors Actuators A 2009, 154:288-294.
    • (2009) Sensors Actuators A , vol.154 , pp. 288-294
    • Yu, J.1    Liu, Z.2    Liu, Q.3    Tai Yuen, K.4    Mak, A.F.T.5    Yang, M.6    Leung, P.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.