메뉴 건너뛰기




Volumn 141, Issue , 2014, Pages 14-23

A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery

Author keywords

Artificial neural network; Bootstrap aggregated tree based methods; Classifier comparison; Generalized additive model; Marine oil spill detection; Penalized linear discriminant analysis; SAR; Support vector machine

Indexed keywords

GENERALIZED ADDITIVE MODEL; LINEAR DISCRIMINANT ANALYSIS; OIL-SPILL DETECTIONS; SAR; TREE-BASED METHODS;

EID: 84887587607     PISSN: 00344257     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rse.2013.10.012     Document Type: Article
Times cited : (139)

References (63)
  • 2
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 1995, 57:289-300.
    • (1995) Journal of the Royal Statistical Society: Series B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 3
    • 67649389414 scopus 로고    scopus 로고
    • Robust supervised classification with mixture models: Learning from data with uncertain labels
    • Bouveyron C., Girard S. Robust supervised classification with mixture models: Learning from data with uncertain labels. Pattern Recognition 2009, 42(11):2649-2658.
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2649-2658
    • Bouveyron, C.1    Girard, S.2
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996, 24:123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 7
    • 38349154577 scopus 로고    scopus 로고
    • Classifiers and confidence estimation for oil spill detection in ENVISAT ASAR images
    • Brekke C., Solberg A.H.S. Classifiers and confidence estimation for oil spill detection in ENVISAT ASAR images. IEEE Geoscience and Remote Sensing Letters 2008, 1:65-69.
    • (2008) IEEE Geoscience and Remote Sensing Letters , vol.1 , pp. 65-69
    • Brekke, C.1    Solberg, A.H.S.2
  • 8
    • 30844446670 scopus 로고    scopus 로고
    • Spatial prediction models for land slide hazards: Review, comparison and evaluation
    • (sRef-ID: 168 4-9981/nhess/20 05-5-853)
    • Brenning A. Spatial prediction models for land slide hazards: Review, comparison and evaluation. Natural Hazards and Earth System Sciences 2005, 5(6):853-862. (sRef-ID: 168 4-9981/nhess/20 05-5-853).
    • (2005) Natural Hazards and Earth System Sciences , vol.5 , Issue.6 , pp. 853-862
    • Brenning, A.1
  • 9
    • 57049102289 scopus 로고    scopus 로고
    • Benchmarking classifiers to optimally integrate analysis and multispectral remote sensing in automatic rock glacier detection
    • Brenning A. Benchmarking classifiers to optimally integrate analysis and multispectral remote sensing in automatic rock glacier detection. Remote Sensing of Environment 2009, 113:239-247.
    • (2009) Remote Sensing of Environment , vol.113 , pp. 239-247
    • Brenning, A.1
  • 12
    • 84865566062 scopus 로고    scopus 로고
    • Detecting rock glacier flow structures using Gabor filters and IKONOS imagery
    • Brenning A., Long S., Fieguth P. Detecting rock glacier flow structures using Gabor filters and IKONOS imagery. Remote Sensing of Environment 2012, 125:227-237.
    • (2012) Remote Sensing of Environment , vol.125 , pp. 227-237
    • Brenning, A.1    Long, S.2    Fieguth, P.3
  • 13
    • 84858716754 scopus 로고    scopus 로고
    • Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa)
    • Carreiras J.M.B., Vasconcelos M.J., Lucas R.M. Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa). Remote Sensing of Environment 2012, 121:426-442.
    • (2012) Remote Sensing of Environment , vol.121 , pp. 426-442
    • Carreiras, J.M.B.1    Vasconcelos, M.J.2    Lucas, R.M.3
  • 14
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of random forest and adaboost treebased ensemble classification and spectral band selection for ecotype mapping using airborne hyperspectral imagery
    • Chan J.C.W., Paelinckx D. Evaluation of random forest and adaboost treebased ensemble classification and spectral band selection for ecotype mapping using airborne hyperspectral imagery. Remote Sensing of Environment 2008, 112:2999-3011.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 2999-3011
    • Chan, J.C.W.1    Paelinckx, D.2
  • 17
    • 84455200427 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
    • Duro D.C., Franklin S.E., Dubé M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment 2012, 118:259-272.
    • (2012) Remote Sensing of Environment , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 18
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters 2006, 27:861-874.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 20
    • 3042654673 scopus 로고    scopus 로고
    • A relative evaluation of multiclass image classification by support vector machines
    • Foody G.M., Mathur A. A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geosciences and Remote Sensing 2004, 42(6):1335-1343. 10.1109/TGRS.20 0 4.8272 57.
    • (2004) IEEE Transactions on Geosciences and Remote Sensing , vol.42 , Issue.6 , pp. 1335-1343
    • Foody, G.M.1    Mathur, A.2
  • 22
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman J.H. Greedy function approximation: A gradient boosting machine. Annals of Statistics 2001, 29(5):1189-1232.
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 23
    • 0032029357 scopus 로고    scopus 로고
    • Multilayer neural networks and Bayes decision theory
    • Funahashi K. Multilayer neural networks and Bayes decision theory. Neural Networks 1998, 209-213.
    • (1998) Neural Networks
    • Funahashi, K.1
  • 28
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley J.A., McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143(1):29-36.
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 34
  • 35
    • 0346245214 scopus 로고    scopus 로고
    • The use of backpropagating artificial networks in land cover classification
    • Kavzoglu T., Mather P.M. The use of backpropagating artificial networks in land cover classification. International Journal of Remote Sensing 2003, 24(23):4907-4938.
    • (2003) International Journal of Remote Sensing , vol.24 , Issue.23 , pp. 4907-4938
    • Kavzoglu, T.1    Mather, P.M.2
  • 36
    • 77949492199 scopus 로고    scopus 로고
    • Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques
    • Knudby A., Ledrew E., Brenning A. Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. Remote Sensing of Environment 2010, 114(6):1230-1241.
    • (2010) Remote Sensing of Environment , vol.114 , Issue.6 , pp. 1230-1241
    • Knudby, A.1    Ledrew, E.2    Brenning, A.3
  • 37
    • 1242341002 scopus 로고    scopus 로고
    • Estimating a kernel Fisher discriminant in the presence of label noise
    • Lawrence N.D., Schölkopf B. Estimating a kernel Fisher discriminant in the presence of label noise. ICML 2001, 306-313.
    • (2001) ICML , pp. 306-313
    • Lawrence, N.D.1    Schölkopf, B.2
  • 38
    • 77951131224 scopus 로고    scopus 로고
    • Oil spill detection from SAR intensity image using a marked point process
    • Li Y., Li J. Oil spill detection from SAR intensity image using a marked point process. Remote Sensing of Environment 2010, 7:1590-1601.
    • (2010) Remote Sensing of Environment , vol.7 , pp. 1590-1601
    • Li, Y.1    Li, J.2
  • 39
    • 0031347022 scopus 로고    scopus 로고
    • An empirical evaluation of bagging and boosting
    • American Association for Artificial Intelligence Press, Rhode Island, (27-31 July 1997, Providence)
    • Maclin R., Opitz D. An empirical evaluation of bagging and boosting. Proceedings of the Fourteenth National Conference on artificial intelligence 1997, 546-551. American Association for Artificial Intelligence Press, Rhode Island, (27-31 July 1997, Providence).
    • (1997) Proceedings of the Fourteenth National Conference on artificial intelligence , pp. 546-551
    • Maclin, R.1    Opitz, D.2
  • 40
    • 0018079655 scopus 로고
    • Basic principles of ROC analysis
    • Metz C.E. Basic principles of ROC analysis. Seminars in Nuclear Medicine 1978, 8:283-298.
    • (1978) Seminars in Nuclear Medicine , vol.8 , pp. 283-298
    • Metz, C.E.1
  • 41
    • 84863257013 scopus 로고    scopus 로고
    • Applying tree-based ensemble algorithms to the classification of ecological zones using multi-temporal multi-source remote-sensing data
    • Miao X., Heaton J.S., Zheng S., Charlet D.A., Liu H. Applying tree-based ensemble algorithms to the classification of ecological zones using multi-temporal multi-source remote-sensing data. International Journal of Remote Sensing 2012, 33:1823-1849.
    • (2012) International Journal of Remote Sensing , vol.33 , pp. 1823-1849
    • Miao, X.1    Heaton, J.S.2    Zheng, S.3    Charlet, D.A.4    Liu, H.5
  • 42
    • 33846662159 scopus 로고    scopus 로고
    • Support vector machines with applications
    • Moguerza J.M., Muñoz A. Support vector machines with applications. Statistical Science 2006, 21(3):322-336.
    • (2006) Statistical Science , vol.21 , Issue.3 , pp. 322-336
    • Moguerza, J.M.1    Muñoz, A.2
  • 46
    • 84863304598 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team R: A language and environment for statistical computing 2005, R Foundation for Statistical Computing, Vienna, Austria, (http://www.Rproject.org).
    • (2005) R: A language and environment for statistical computing
  • 50
    • 77955326628 scopus 로고    scopus 로고
    • Mapping global urban areas using MODIS 500-m data: New methods and datasets based on 'urban ecoregions'
    • Schneider A., Friedl M.A., Potere D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on 'urban ecoregions'. Remote Sensing of Environment 2010, 114:1733-1746.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 1733-1746
    • Schneider, A.1    Friedl, M.A.2    Potere, D.3
  • 51
    • 77954816223 scopus 로고    scopus 로고
    • Dark spot detection from SAR intensity imagery with spatial density thresholding for oil spill monitoring
    • Shu Y.M., Li J., Gomes G., Yousif H. Dark spot detection from SAR intensity imagery with spatial density thresholding for oil spill monitoring. Remote Sensing of Environment 2010, 19:2026-2035.
    • (2010) Remote Sensing of Environment , vol.19 , pp. 2026-2035
    • Shu, Y.M.1    Li, J.2    Gomes, G.3    Yousif, H.4
  • 56
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • Strobl C., Boulesteix A.L., Zeileis A., Hothorn T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 2007, 25. 10.1186/1471-2105-8-25.
    • (2007) BMC Bioinformatics , vol.25
    • Strobl, C.1    Boulesteix, A.L.2    Zeileis, A.3    Hothorn, T.4
  • 58
    • 55249117307 scopus 로고    scopus 로고
    • Oil spill detection by SAR images: Dark formation detection, feature extraction and classification algorithms
    • Topouzelis K.N. Oil spill detection by SAR images: Dark formation detection, feature extraction and classification algorithms. Sensors 2008, 8:6642-6659.
    • (2008) Sensors , vol.8 , pp. 6642-6659
    • Topouzelis, K.N.1
  • 60
    • 84857385727 scopus 로고    scopus 로고
    • Oil spill feature selection and classification using decision tree forest on SAR image data
    • Topouzelis K., Psyllos A. Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS Journal of Photogrammetry and Remote Sensing 2012, 68:135-143.
    • (2012) ISPRS Journal of Photogrammetry and Remote Sensing , vol.68 , pp. 135-143
    • Topouzelis, K.1    Psyllos, A.2
  • 61
    • 67650650025 scopus 로고    scopus 로고
    • Investigation of genetic algorithms contribution to feature selection for oil spill detection
    • Topouzelis K., Stathakis D., Karathanassi V. Investigation of genetic algorithms contribution to feature selection for oil spill detection. International Journal of Remote Sensing 2009, 30(3):611-625.
    • (2009) International Journal of Remote Sensing , vol.30 , Issue.3 , pp. 611-625
    • Topouzelis, K.1    Stathakis, D.2    Karathanassi, V.3
  • 63
    • 0027457620 scopus 로고
    • Receiver operating characteristic (ROC) plots
    • Zweig M.H., Campbell G. Receiver operating characteristic (ROC) plots. Clinical Chemistry 1993, 39:561-577.
    • (1993) Clinical Chemistry , vol.39 , pp. 561-577
    • Zweig, M.H.1    Campbell, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.