메뉴 건너뛰기




Volumn 24, Issue 23, 2003, Pages 4907-4938

The use of backpropagating artificial neural networks in land cover classification

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; DATA REDUCTION; HEURISTIC METHODS; NEURAL NETWORKS; VEGETATION;

EID: 0346245214     PISSN: 01431161     EISSN: None     Source Type: Journal    
DOI: 10.1080/0143116031000114851     Document Type: Article
Times cited : (371)

References (70)
  • 1
    • 0030302438 scopus 로고    scopus 로고
    • Classification of ASAS multiangle and multispectral measurements using artificial neural networks
    • ABUELGASIM, A. A., GOPAL, S., IRONS, J. R., and STRAHLER, A. H., 1996, Classification of ASAS multiangle and multispectral measurements using artificial neural networks. Remote Sensing of Environment, 57, 79-87.
    • (1996) Remote Sensing of Environment , vol.57 , pp. 79-87
    • Abuelgasim, A.A.1    Gopal, S.2    Irons, J.R.3    Strahler, A.H.4
  • 2
    • 0347479410 scopus 로고
    • Scaling and generalization in neural networks: A case study
    • edited by D. S. Touretzky (San Mateo: Morgan Kaufmann)
    • AHMAD, S., and TESAURO, G., 1989, Scaling and generalization in neural networks: a case study. In Advances in Neural Information Processing Systems I. edited by D. S. Touretzky (San Mateo: Morgan Kaufmann). pp. 160-168.
    • (1989) Advances in Neural Information Processing Systems I , pp. 160-168
    • Ahmad, S.1    Tesauro, G.2
  • 3
    • 0031221032 scopus 로고    scopus 로고
    • Neural networks, multitemporal Landsat Thematic Mapper data and topographic data to classify forest damages in the Czech Republic
    • ARDO, J., PILESJÖ, P., and SKIDMORE, A., 1997, Neural networks, multitemporal Landsat Thematic Mapper data and topographic data to classify forest damages in the Czech Republic. Canadian Journal of Remote Sensing, 23, 217-229.
    • (1997) Canadian Journal of Remote Sensing , vol.23 , pp. 217-229
    • Ardo, J.1    Pilesjö, P.2    Skidmore, A.3
  • 5
    • 0002127281 scopus 로고
    • What size net gives valid generalization?
    • edited by D. S. Touretzky (San Mateo: Morgan Kaufmann)
    • BAUM, E. B., and HAUSSLER, D., 1989, What size net gives valid generalization? In Advances in Neural Information Processing Systems I, edited by D. S. Touretzky (San Mateo: Morgan Kaufmann), pp. 81-90.
    • (1989) Advances in Neural Information Processing Systems I , pp. 81-90
    • Baum, E.B.1    Haussler, D.2
  • 6
    • 0031281425 scopus 로고    scopus 로고
    • Coupling weight elimination with genetic algorithms to reduce network size and preserve generalization
    • BEBIS, G., GEORGIOPOULOS, M., and KASPARIS, T., 1997, Coupling weight elimination with genetic algorithms to reduce network size and preserve generalization. Neurocomputing, 17, 167-194.
    • (1997) Neurocomputing , vol.17 , pp. 167-194
    • Bebis, G.1    Georgiopoulos, M.2    Kasparis, T.3
  • 7
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • BENEDIKTSSON, J. A., SWAIN, P. H., and ERSOY, O. K., 1990, Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 28, 540-551.
    • (1990) IEEE Transactions on Geoscience and Remote Sensing , vol.28 , pp. 540-551
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 10
    • 0041646441 scopus 로고    scopus 로고
    • The influence of relative sample size in training artificial neural networks
    • BLAMIRE, P. A., 1996, The influence of relative sample size in training artificial neural networks. International Journal of Remote Sensing, 17, 223-230.
    • (1996) International Journal of Remote Sensing , vol.17 , pp. 223-230
    • Blamire, P.A.1
  • 11
    • 0347406812 scopus 로고
    • On the identification of urban areas from Landsat TM data using artificial neural networks
    • Southampton, UK, 11-14 September 1995, (Nottingham: Remote Sensing Society)
    • BLAMIRE, P. A., and MINETER, M. J., 1995, On the identification of urban areas from Landsat TM data using artificial neural networks. Proceedings of the 21st Annual Conference of the Remote Sensing Society, Southampton, UK, 11-14 September 1995, (Nottingham: Remote Sensing Society), pp. 50-57.
    • (1995) Proceedings of the 21st Annual Conference of the Remote Sensing Society , pp. 50-57
    • Blamire, P.A.1    Mineter, M.J.2
  • 12
    • 0030618061 scopus 로고    scopus 로고
    • Multisource classification of complex rural areas by statistical and neural-network approaches
    • BRUZZONE, L., CONESE, C., MASELLI, F., and ROLI, F., 1997, Multisource classification of complex rural areas by statistical and neural-network approaches. Photogrammetric Engineering and Remote Sensing, 63, 523-533.
    • (1997) Photogrammetric Engineering and Remote Sensing , vol.63 , pp. 523-533
    • Bruzzone, L.1    Conese, C.2    Maselli, F.3    Roli, F.4
  • 14
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • CYBENKO, G., 1989, Approximation by superpositions of a sigmoidal function. Mathematics of Control. Signals, and Systems, 2, 303-314.
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 15
    • 0026748097 scopus 로고
    • Learning coefficient dependence on training set size
    • EATON, H. A. C., and OLIVIER, T. L., 1992, Learning coefficient dependence on training set size. Neural Networks, 5, 283-288.
    • (1992) Neural Networks , vol.5 , pp. 283-288
    • Eaton, H.A.C.1    Olivier, T.L.2
  • 18
    • 0028874010 scopus 로고
    • Using prior knowledge in artificial neural network classification with a minimal training set
    • FOODY, G. M., 1995, Using prior knowledge in artificial neural network classification with a minimal training set. International Journal of Remote Sensing, 16, 301-312.
    • (1995) International Journal of Remote Sensing , vol.16 , pp. 301-312
    • Foody, G.M.1
  • 19
    • 0030392042 scopus 로고    scopus 로고
    • Estimation of the areal extent of land cover classes that only occur at a sub-pixel level
    • FOODY, G. M., LUCAS, R. M., CURRAN, P. J., and HONZAK, M., 1996, Estimation of the areal extent of land cover classes that only occur at a sub-pixel level. Canadian Journal of Remote Sensing, 22, 428-432.
    • (1996) Canadian Journal of Remote Sensing , vol.22 , pp. 428-432
    • Foody, G.M.1    Lucas, R.M.2    Curran, P.J.3    Honzak, M.4
  • 21
    • 0348037748 scopus 로고    scopus 로고
    • Visualisation of learning in neural networks using principal component analysis
    • Gold Coast, Australia, 10-12 February 1997, edited by B. Verma and X. Yao
    • GALLAGHER, M., and DOWNS, T., 1997, Visualisation of learning in neural networks using principal component analysis. Proceedings of International Conference on Computational Intelligence and Multimedia Applications, Gold Coast, Australia, 10-12 February 1997, edited by B. Verma and X. Yao, pp. 327-331.
    • (1997) Proceedings of International Conference on Computational Intelligence and Multimedia Applications , pp. 327-331
    • Gallagher, M.1    Downs, T.2
  • 23
    • 0029768950 scopus 로고    scopus 로고
    • Integrated analysis of spatial data from multiple sources: Using evidential reasoning and artificial neural network techniques for geological mapping
    • GONG, P., 1996, Integrated analysis of spatial data from multiple sources: using evidential reasoning and artificial neural network techniques for geological mapping. Photogrammetric Engineering and Remote Sensing, 62, 513-523.
    • (1996) Photogrammetric Engineering and Remote Sensing , vol.62 , pp. 513-523
    • Gong, P.1
  • 24
    • 0030302935 scopus 로고    scopus 로고
    • Mapping ecological land systems and classification uncertainties from digital elevation and forest-cover data using neural networks
    • GONG, P., PU, R., and CHEN, J., 1996, Mapping ecological land systems and classification uncertainties from digital elevation and forest-cover data using neural networks. Photogrammetric Engineering and Remote Sensing, 62, 1249-1260.
    • (1996) Photogrammetric Engineering and Remote Sensing , vol.62 , pp. 1249-1260
    • Gong, P.1    Pu, R.2    Chen, J.3
  • 30
    • 0026678254 scopus 로고
    • Classification of multispectral remote sensing data using a back-propagation neural network
    • HEERMANN, P. D., and KHAZENIE, N., 1992, Classification of multispectral remote sensing data using a back-propagation neural network. IEEE Transactions on Geoscience and Remote Sensing, 30, 81-88.
    • (1992) IEEE Transactions on Geoscience and Remote Sensing , vol.30 , pp. 81-88
    • Heermann, P.D.1    Khazenie, N.2
  • 31
    • 0025573206 scopus 로고
    • Artificial neural network classification using a minimal training set: Comparison to conventional supervised classification
    • HEPNER, G. F., LOGAN, T., RITTER, N., and BRYANT, N., 1990, Artificial neural network classification using a minimal training set: comparison to conventional supervised classification. Photogrammetric Engineering and Remote Sensing, 56, 469-473.
    • (1990) Photogrammetric Engineering and Remote Sensing , vol.56 , pp. 469-473
    • Hepner, G.F.1    Logan, T.2    Ritter, N.3    Bryant, N.4
  • 32
    • 0025792215 scopus 로고
    • Bounds on the number of hidden neurons in multilayer perceptrons
    • HUANG, S. C., and HUANG, Y. F., 1991, Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Transactions on Neural Networks, 2, 47-55.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , pp. 47-55
    • Huang, S.C.1    Huang, Y.F.2
  • 36
    • 0346776328 scopus 로고    scopus 로고
    • Thematic information extraction in a neural network classification of multi-sensor data including microwave phase information
    • HUURNEMAN, G., GENS, R., and BROEKEMA, L., 1996, Thematic information extraction in a neural network classification of multi-sensor data including microwave phase information. International Archives of Photogrammetry and Remote Sensing, XXXI, 170-175.
    • (1996) International Archives of Photogrammetry and Remote Sensing , vol.31 , pp. 170-175
    • Huurneman, G.1    Gens, R.2    Broekema, L.3
  • 38
    • 0026442955 scopus 로고
    • Land-cover discrimination in SPOT HRV imagery using an artificial neural network - A 20-class experiment
    • KANELLOPOULOS, I., VARFIS, A., WILKINSON, G. G., and MEGIER, J., 1992, Land-cover discrimination in SPOT HRV imagery using an artificial neural network - a 20-class experiment. International Journal of Remote Sensing, 13, 917-924.
    • (1992) International Journal of Remote Sensing , vol.13 , pp. 917-924
    • Kanellopoulos, I.1    Varfis, A.2    Wilkinson, G.G.3    Megier, J.4
  • 40
    • 0033454031 scopus 로고    scopus 로고
    • Pruning artificial neural networks: An example using land cover classification of multi-sensor images
    • KAVZOGLU, T., and MATHER, P. M., 1999, Pruning artificial neural networks: an example using land cover classification of multi-sensor images. International Journal of Remote Sensing, 20, 2787-2803.
    • (1999) International Journal of Remote Sensing , vol.20 , pp. 2787-2803
    • Kavzoglu, T.1    Mather, P.M.2
  • 41
    • 0036324671 scopus 로고    scopus 로고
    • The role of feature selection in artificial neural network applications
    • KAVZOGLU, T., and MATHER, P. M., 2002, The role of feature selection in artificial neural network applications. International Journal of Remote Sensing, 23, 2919-2937.
    • (2002) International Journal of Remote Sensing , vol.23 , pp. 2919-2937
    • Kavzoglu, T.1    Mather, P.M.2
  • 42
    • 0040165735 scopus 로고
    • Applying neural networks
    • edited by R. R. Trippi and E. Turban (Cambridge: Probus)
    • KLIMASAUSKAS, C. C., 1993, Applying neural networks. In Neural Networks in Finance and Investing, edited by R. R. Trippi and E. Turban (Cambridge: Probus), pp. 47-72.
    • (1993) Neural Networks in Finance and Investing , pp. 47-72
    • Klimasauskas, C.C.1
  • 43
    • 0001698980 scopus 로고
    • Back propagation is sensitive to initial conditions
    • KOLEN, J. F., and POLLACK, J. B., 1990, Back propagation is sensitive to initial conditions. Complex Systems, 4, 269-280.
    • (1990) Complex Systems , vol.4 , pp. 269-280
    • Kolen, J.F.1    Pollack, J.B.2
  • 45
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • April
    • LIPPMANN, R. P., 1987, An introduction to computing with neural nets. IEEE ASSP Magazine, April, 4-22.
    • (1987) IEEE ASSP Magazine , pp. 4-22
    • Lippmann, R.P.1
  • 47
    • 0242514476 scopus 로고    scopus 로고
    • Choosing an optimal neural network size to aid search through a large image database
    • edited by J. N. Carter and M. S. Nixon and M. S. Nixon (London: British Machine Vision Association)
    • MESSER, K., and KITTLER, J., 1998, Choosing an optimal neural network size to aid search through a large image database. Proceedings of the 9th British Machine Vision Conference, University of Southampton, UK, 14-17 September 1998, edited by J. N. Carter and M. S. Nixon and M. S. Nixon (London: British Machine Vision Association), pp. 235-244.
    • (1998) Proceedings of the 9th British Machine Vision Conference, University of Southampton, UK, 14-17 September 1998 , pp. 235-244
    • Messer, K.1    Kittler, J.2
  • 50
    • 0028757233 scopus 로고
    • Comparisons of neural networks to standard techniques for image classification and correlation
    • Pasadena, CA, 8-12 August 1994 (New York: IEEE)
    • PAOLA, J. D., and SCHOWENGERDT, R. A., 1994, Comparisons of neural networks to standard techniques for image classification and correlation. Proceedings of the International Geoscience and Remote Sensing Symposium. Pasadena, CA, 8-12 August 1994 (New York: IEEE), pp. 1404-1406.
    • (1994) Proceedings of the International Geoscience and Remote Sensing Symposium , pp. 1404-1406
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 51
    • 0029341018 scopus 로고
    • A detailed comparison of back-propagation neural network and maximum-likehood classifiers for urban land use classification
    • PAOLA, J. D., and SCHOWENGERDT, R. A., 1995a, A detailed comparison of back-propagation neural network and maximum-likehood classifiers for urban land use classification. IEEE Transactions on Geoscience and Remote Sensing, 33, 981-996.
    • (1995) IEEE Transactions on Geoscience and Remote Sensing , vol.33 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 52
    • 0029415649 scopus 로고
    • A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery
    • PAOLA, J. D., and SCHOWENGERDT, R. A., 1995b, A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery. International Journal of Remote Sensing, 16, 3033-3058.
    • (1995) International Journal of Remote Sensing , vol.16 , pp. 3033-3058
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 53
    • 0030618062 scopus 로고    scopus 로고
    • The effect of neural-network structure on a multispectral land-use/land-cover classification
    • PAOLA, J. D., and SCHOWENGERDT, R. A., 1997, The effect of neural-network structure on a multispectral land-use/land-cover classification. Photogrammetric Engineering and Remote Sensing, 63, 535-544.
    • (1997) Photogrammetric Engineering and Remote Sensing , vol.63 , pp. 535-544
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 54
    • 0346776330 scopus 로고    scopus 로고
    • Replicability of neural computing experiments
    • PARTRIDGE, D., and YATES, W. B., 1996, Replicability of neural computing experiments, Complex Systems, 10, 257-281.
    • (1996) Complex Systems , vol.10 , pp. 257-281
    • Partridge, D.1    Yates, W.B.2
  • 55
    • 0028584639 scopus 로고
    • Application of an artificial neural network in canopy scattering inversion
    • PIERCE, L. E., SARABANDI, K., and ULABY, F. T., 1994, Application of an artificial neural network in canopy scattering inversion. International Journal of Remote Sensing, 15, 3263-3270.
    • (1994) International Journal of Remote Sensing , vol.15 , pp. 3263-3270
    • Pierce, L.E.1    Sarabandi, K.2    Ulaby, F.T.3
  • 56
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • RICHARD, M. D., and LIPPMANN, R. R., 1991, Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation, 3, 461-483.
    • (1991) Neural Computation , vol.3 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.R.2
  • 57
    • 0002983776 scopus 로고
    • Statistical aspects of neural networks
    • edited by O. E. Barndorff-Nielsen, J. L. Jensen, and W. S. Kendall (London: Chapman and Hall)
    • RIPLEY, B. D., 1993, Statistical aspects of neural networks. In Networks and Chaos - Statistical and Probabilistic Aspects, edited by O. E. Barndorff-Nielsen, J. L. Jensen, and W. S. Kendall (London: Chapman & Hall), pp. 40-123.
    • (1993) Networks and Chaos - Statistical and Probabilistic Aspects , pp. 40-123
    • Ripley, B.D.1
  • 61
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • SIETSMA, J., and DOW, R. J. F., 1991, Creating artificial neural networks that generalize. Neural Networks, 4, 67-79.
    • (1991) Neural Networks , vol.4 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.F.2
  • 63
    • 0343295539 scopus 로고
    • Sigmoids distinguish better than Heavisides
    • SONTAG, E. D., 1989, Sigmoids distinguish better than Heavisides. Neural Computation, 1. 470-472.
    • (1989) Neural Computation , vol.1 , pp. 470-472
    • Sontag, E.D.1
  • 64
    • 0009846660 scopus 로고    scopus 로고
    • VC dimension of neural networks
    • edited by C. M. Bishop (Berlin: Springer-Verlag)
    • SONTAG, E. D., 1998, VC dimension of neural networks. In Neural Networks and Machine Learning, edited by C. M. Bishop (Berlin: Springer-Verlag), pp. 69-95.
    • (1998) Neural Networks and Machine Learning , pp. 69-95
    • Sontag, E.D.1
  • 65
    • 0342962686 scopus 로고    scopus 로고
    • Spectral pattern recognition by a two-layer perceptron: Effects of training set size
    • edited by I. Kanellopoulos, G. G. Wilkinson, F. Roli, and J. Austin (London: Springer)
    • STAUFFER, P., and FISCHER, M. M., 1997, Spectral pattern recognition by a two-layer perceptron: effects of training set size. In Neurocomputation in Remote Sensing Data Analysis, edited by I. Kanellopoulos, G. G. Wilkinson, F. Roli, and J. Austin (London: Springer), pp. 105-116.
    • (1997) Neurocomputation in Remote Sensing Data Analysis , pp. 105-116
    • Stauffer, P.1    Fischer, M.M.2
  • 70
    • 0028034630 scopus 로고
    • The use of artificial neural networks in a geographical information system for agricultural land-suitability assessment
    • WANG, F., 1994b, The use of artificial neural networks in a geographical information system for agricultural land-suitability assessment. Environment and Planning A, 26, 265-284.
    • (1994) Environment and Planning A , vol.26 , pp. 265-284
    • Wang, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.