메뉴 건너뛰기




Volumn 42, Issue 11, 2009, Pages 2649-2658

Robust supervised classification with mixture models: Learning from data with uncertain labels

Author keywords

Data with uncertain labels; Label noise; Mixture models; Robustness; Supervised classification; Weakly supervised classification

Indexed keywords

DATA WITH UNCERTAIN LABELS; MIXTURE MODELS; ROBUSTNESS; SUPERVISED CLASSIFICATION; WEAKLY SUPERVISED CLASSIFICATION;

EID: 67649389414     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.03.027     Document Type: Article
Times cited : (115)

References (33)
  • 1
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield J., and Raftery A. Model-based Gaussian and non-Gaussian clustering. Biometrics 49 (1993) 803-821
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.1    Raftery, A.2
  • 2
    • 7044269683 scopus 로고    scopus 로고
    • High breakdown mixture discriminant analysis
    • Bashir S., and Carter E. High breakdown mixture discriminant analysis. Journal of Multivariate Analysis 93 1 (2005) 102-111
    • (2005) Journal of Multivariate Analysis , vol.93 , Issue.1 , pp. 102-111
    • Bashir, S.1    Carter, E.2
  • 3
    • 0003787146 scopus 로고
    • Princeton University Press, Princeton, NJ
    • Bellman R. Dynamic Programming (1957), Princeton University Press, Princeton, NJ
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 4
    • 0030326891 scopus 로고    scopus 로고
    • Regularized Gaussian discriminant analysis through eigenvalue decomposition
    • Bensmail H., and Celeux G. Regularized Gaussian discriminant analysis through eigenvalue decomposition. Journal of the American Statistical Association 91 (1996) 1743-1748
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 1743-1748
    • Bensmail, H.1    Celeux, G.2
  • 8
    • 0029305528 scopus 로고
    • Parsimonious Gaussian models in cluster analysis
    • Celeux G., and Govaert G. Parsimonious Gaussian models in cluster analysis. Pattern Recognition 28 (1995) 781-793
    • (1995) Pattern Recognition , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, G.2
  • 10
    • 0018923633 scopus 로고
    • Noising around the neighbourhood: a new system structure and classification rule for recognition in partially exposed environments
    • Dasarathy B. Noising around the neighbourhood: a new system structure and classification rule for recognition in partially exposed environments. IEEE Transactions on Pattern Analysis and Machine Intelligence 2 (1980) 67-71
    • (1980) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.2 , pp. 67-71
    • Dasarathy, B.1
  • 19
    • 34547697572 scopus 로고    scopus 로고
    • Classification in the presence of class noise using a probabilistic kernel Fisher method
    • Li Y., Wessels L., de Ridder D., and Reinders M. Classification in the presence of class noise using a probabilistic kernel Fisher method. Pattern Recognition 40 12 (2007) 3349-3357
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3349-3357
    • Li, Y.1    Wessels, L.2    de Ridder, D.3    Reinders, M.4
  • 20
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe D. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60 2 (2004) 91-110
    • (2004) International Journal of Computer Vision , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 23
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • Mingers J. An empirical comparison of pruning methods for decision tree induction. Journal of Machine Learning 4 2 (1989) 227-243
    • (1989) Journal of Machine Learning , vol.4 , Issue.2 , pp. 227-243
    • Mingers, J.1
  • 26
    • 0027585704 scopus 로고
    • Noise-tolerant occam algorithms and their applications to learning decision trees
    • Sakakibara Y. Noise-tolerant occam algorithms and their applications to learning decision trees. Journal of Machine Learning 11 1 (1993) 37-62
    • (1993) Journal of Machine Learning , vol.11 , Issue.1 , pp. 37-62
    • Sakakibara, Y.1
  • 27
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R. The strength of weak learnability. Machine Learning 5 (1990) 197-227
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.1
  • 28
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. The Annals of Statistics 6 (1978) 461-464
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 29
    • 0013322395 scopus 로고    scopus 로고
    • Handling uncertain labels in multiclass problems using belief decision trees
    • Vannoorenbergue P., and Denoeux T. Handling uncertain labels in multiclass problems using belief decision trees. Proceedings of IPMU'2002 (2002)
    • (2002) Proceedings of IPMU'2002
    • Vannoorenbergue, P.1    Denoeux, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.