메뉴 건너뛰기




Volumn , Issue , 2011, Pages 85-94

Bagging gradient-boosted trees for high precision, low variance ranking models

Author keywords

Bagging; Learning to rank; Tree ensembles

Indexed keywords

BAGGING; LEARNING METHODS; LEARNING TO RANK; PARAMETER-TUNING; PREDICTIVE PERFORMANCE; TREE ENSEMBLES; VARIANCE RANKING; VARIANCE REDUCTION TECHNIQUES;

EID: 80052107008     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2009916.2009932     Document Type: Conference Paper
Times cited : (176)

References (34)
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Mach. Learn., 24:123-140, August 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman. Random forests. Machine Learning, 45:5-32, 2001. 10.1023/A:1010933404324. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 0035575477 scopus 로고    scopus 로고
    • Using iterated bagging to debias regressions
    • DOI 10.1023/A:1017934522171
    • L. Breiman. Using iterated bagging to debias regressions. Mach. Learn., 45:261-277, December 2001. (Pubitemid 33074822)
    • (2001) Machine Learning , vol.45 , Issue.3 , pp. 261-277
    • Breiman, L.1
  • 7
    • 84864039510 scopus 로고    scopus 로고
    • Learning to rank with nonsmooth cost functions
    • C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to rank with nonsmooth cost functions. In NIPS, pages 193-200, 2006.
    • (2006) NIPS , pp. 193-200
    • Burges, C.J.C.1    Ragno, R.2    Le, Q.V.3
  • 11
    • 77953646359 scopus 로고    scopus 로고
    • Gradient descent optimization of smoothed information retrieval metrics
    • June
    • O. Chapelle and M. Wu. Gradient descent optimization of smoothed information retrieval metrics. Inf. Retr., 13:216-235, June 2010.
    • (2010) Inf. Retr. , vol.13 , pp. 216-235
    • Chapelle, O.1    Wu, M.2
  • 13
    • 4644367942 scopus 로고    scopus 로고
    • An efficient boosting algorithm for combining preferences
    • Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res., 4:933-969, 2003.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 933-969
    • Freund, Y.1    Iyer, R.2    Schapire, R.E.3    Singer, Y.4
  • 14
    • 0003743417 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Technical report Stanford Univ.
    • J. H. Friedman. Stochastic gradient boosting. Technical report, Technical report, Dept. Statistics, Stanford Univ., 1999.
    • (1999) Technical Report, Dept. Statistics
    • Friedman, J.H.1
  • 15
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:1189-1232, 2000. (Pubitemid 33405972)
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 16
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • January
    • S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma. Neural Comput., 4:1-58, January 1992.
    • (1992) Neural Comput. , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 17
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors Cambridge, MA MIT Press
    • R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 115-132, Cambridge, MA, 2000. MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 18
    • 0028259890 scopus 로고
    • Decision combination in multiple classifier systems
    • IEEE Transactions on Jan.
    • T. K. Ho, J. Hull, and S. Srihari. Decision combination in multiple classifier systems. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 16(1):66-75, Jan. 1994.
    • (1994) Pattern Analysis and Machine Intelligence , vol.16 , Issue.1 , pp. 66-75
    • Ho, T.K.1    Hull, J.2    Srihari, S.3
  • 21
    • 57649092193 scopus 로고    scopus 로고
    • Mcrank: Learning to rank using multiple classification and gradient boosting
    • P. Li, C. J. C. Burges, and Q. Wu. Mcrank: Learning to rank using multiple classification and gradient boosting. In NIPS, 2007.
    • (2007) NIPS
    • Li, P.1    Burges, C.J.C.2    Wu, Q.3
  • 24
    • 77954568972 scopus 로고    scopus 로고
    • LETOR: A benchmark collection for research on learning to rank for information retrieval
    • 10.1007/s10791-009-9123-y
    • T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A benchmark collection for research on learning to rank for information retrieval. Information Retrieval, 13:346-374, 2010. 10.1007/s10791-009-9123-y.
    • (2010) Information Retrieval , vol.13 , pp. 346-374
    • Qin, T.1    Liu, T.-Y.2    Xu, J.3    Li, H.4
  • 31
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • August
    • G. I. Webb. Multiboosting: A technique for combining boosting and wagging. Mach. Learn., 40:159-196, August 2000.
    • (2000) Mach. Learn. , vol.40 , pp. 159-196
    • Webb, G.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.