-
2
-
-
0005540823
-
-
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
-
R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.
-
(1999)
Modern Information Retrieval
-
-
Baeza-Yates, R.1
Ribeiro-Neto, B.2
-
3
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Mach. Learn., 24:123-140, August 1996. (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0035478854
-
Random forests
-
DOI 10.1023/A:1010933404324
-
L. Breiman. Random forests. Machine Learning, 45:5-32, 2001. 10.1023/A:1010933404324. (Pubitemid 32933532)
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
5
-
-
0035575477
-
Using iterated bagging to debias regressions
-
DOI 10.1023/A:1017934522171
-
L. Breiman. Using iterated bagging to debias regressions. Mach. Learn., 45:261-277, December 2001. (Pubitemid 33074822)
-
(2001)
Machine Learning
, vol.45
, Issue.3
, pp. 261-277
-
-
Breiman, L.1
-
7
-
-
84864039510
-
Learning to rank with nonsmooth cost functions
-
C. J. C. Burges, R. Ragno, and Q. V. Le. Learning to rank with nonsmooth cost functions. In NIPS, pages 193-200, 2006.
-
(2006)
NIPS
, pp. 193-200
-
-
Burges, C.J.C.1
Ragno, R.2
Le, Q.V.3
-
8
-
-
31844446958
-
Learning to rank using gradient descent
-
DOI 10.1145/1102351.1102363, ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
-
C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. N. Hullender. Learning to rank using gradient descent. In ICML, pages 89-96, 2005. (Pubitemid 43183320)
-
(2005)
ICML 2005 - Proceedings of the 22nd International Conference on Machine Learning
, pp. 89-96
-
-
Burges, C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.7
-
9
-
-
34547987951
-
Learning to rank: From pairwise approach to listwise approach
-
New York, NY, USA ACM
-
Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: from pairwise approach to listwise approach. In ICML '07: Proceedings of the 24th international conference on Machine learning, pages 129-136, New York, NY, USA, 2007. ACM.
-
(2007)
ICML '07: Proceedings of the 24th International Conference on Machine Learning
, pp. 129-136
-
-
Cao, Z.1
Qin, T.2
Liu, T.-Y.3
Tsai, M.-F.4
Li, H.5
-
11
-
-
77953646359
-
Gradient descent optimization of smoothed information retrieval metrics
-
June
-
O. Chapelle and M. Wu. Gradient descent optimization of smoothed information retrieval metrics. Inf. Retr., 13:216-235, June 2010.
-
(2010)
Inf. Retr.
, vol.13
, pp. 216-235
-
-
Chapelle, O.1
Wu, M.2
-
13
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res., 4:933-969, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
14
-
-
0003743417
-
Stochastic gradient boosting
-
Technical report Stanford Univ.
-
J. H. Friedman. Stochastic gradient boosting. Technical report, Technical report, Dept. Statistics, Stanford Univ., 1999.
-
(1999)
Technical Report, Dept. Statistics
-
-
Friedman, J.H.1
-
15
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:1189-1232, 2000. (Pubitemid 33405972)
-
(2001)
Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
16
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
January
-
S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma. Neural Comput., 4:1-58, January 1992.
-
(1992)
Neural Comput.
, vol.4
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
17
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors Cambridge, MA MIT Press
-
R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 115-132, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
18
-
-
0028259890
-
Decision combination in multiple classifier systems
-
IEEE Transactions on Jan.
-
T. K. Ho, J. Hull, and S. Srihari. Decision combination in multiple classifier systems. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 16(1):66-75, Jan. 1994.
-
(1994)
Pattern Analysis and Machine Intelligence
, vol.16
, Issue.1
, pp. 66-75
-
-
Ho, T.K.1
Hull, J.2
Srihari, S.3
-
19
-
-
0033645041
-
IR evaluation methods for retrieving highly relevant documents
-
New York, NY, USA ACM
-
K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly relevant documents. In SIGIR '00: Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, pages 41-48, New York, NY, USA, 2000. ACM.
-
(2000)
SIGIR '00: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 41-48
-
-
Järvelin, K.1
Kekäläinen, J.2
-
21
-
-
57649092193
-
Mcrank: Learning to rank using multiple classification and gradient boosting
-
P. Li, C. J. C. Burges, and Q. Wu. Mcrank: Learning to rank using multiple classification and gradient boosting. In NIPS, 2007.
-
(2007)
NIPS
-
-
Li, P.1
Burges, C.J.C.2
Wu, Q.3
-
23
-
-
78651338217
-
BagBoo: A scalable hybrid bagging-the-boosting model
-
CIKM '10 New York, NY, USA ACM
-
D. Y. Pavlov, A. Gorodilov, and C. A. Brunk. BagBoo: a scalable hybrid bagging-the-boosting model. In Proceedings of the 19th ACM international conference on Information and knowledge management, CIKM '10, pages 1897-1900, New York, NY, USA, 2010. ACM.
-
(2010)
Proceedings of the 19th ACM International Conference on Information and Knowledge Management
, pp. 1897-1900
-
-
Pavlov, D.Y.1
Gorodilov, A.2
Brunk, C.A.3
-
24
-
-
77954568972
-
LETOR: A benchmark collection for research on learning to rank for information retrieval
-
10.1007/s10791-009-9123-y
-
T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A benchmark collection for research on learning to rank for information retrieval. Information Retrieval, 13:346-374, 2010. 10.1007/s10791-009-9123-y.
-
(2010)
Information Retrieval
, vol.13
, pp. 346-374
-
-
Qin, T.1
Liu, T.-Y.2
Xu, J.3
Li, H.4
-
25
-
-
77956201579
-
Combined regression and ranking
-
KDD '10 New York, NY, USA ACM
-
D. Sculley. Combined regression and ranking. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10, pages 979-988, New York, NY, USA, 2010. ACM.
-
(2010)
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 979-988
-
-
Sculley, D.1
-
26
-
-
38049160684
-
Additive groves of regression trees
-
ECML '07 Berlin, Heidelberg Springer-Verlag
-
D. Sorokina, R. Caruana, and M. Riedewald. Additive groves of regression trees. In Proceedings of the 18th European conference on Machine Learning, ECML '07, pages 323-334, Berlin, Heidelberg, 2007. Springer-Verlag.
-
(2007)
Proceedings of the 18th European Conference on Machine Learning
, pp. 323-334
-
-
Sorokina, D.1
Caruana, R.2
Riedewald, M.3
-
28
-
-
36448961557
-
FRank: A ranking method with fidelity loss
-
DOI 10.1145/1277741.1277808, Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'07
-
M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma. FRank: a ranking method with fidelity loss. In SIGIR '07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pages 383-390, New York, NY, USA, 2007. ACM. (Pubitemid 350164984)
-
(2007)
Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'07
, pp. 383-390
-
-
Tsai, M.-F.1
Liu, T.-Y.2
Qin, T.3
Chen, H.-H.4
Ma, W.-Y.5
-
30
-
-
71149095619
-
Boltzrank: Learning to maximize expected ranking gain
-
ICML '09 New York, NY, USA ACM
-
M. N. Volkovs and R. S. Zemel. Boltzrank: learning to maximize expected ranking gain. In Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pages 1089-1096, New York, NY, USA, 2009. ACM.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 1089-1096
-
-
Volkovs, M.N.1
Zemel, R.S.2
-
31
-
-
0034247206
-
Multiboosting: A technique for combining boosting and wagging
-
August
-
G. I. Webb. Multiboosting: A technique for combining boosting and wagging. Mach. Learn., 40:159-196, August 2000.
-
(2000)
Mach. Learn.
, vol.40
, pp. 159-196
-
-
Webb, G.I.1
-
32
-
-
70349265131
-
Ranking, boosting and model adaptation
-
Technical report
-
Q. Wu, C. Burges, K. Svore, and J. Gao. Ranking, boosting and model adaptation. Technical report, Microsoft Technical Report MSR-TR-2008-109, 2008.
-
(2008)
Microsoft Technical Report MSR-TR-2008-109
-
-
Wu, Q.1
Burges, C.2
Svore, K.3
Gao, J.4
-
33
-
-
36448954244
-
AdaRank: A boosting algorithm for information retrieval
-
DOI 10.1145/1277741.1277809, Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'07
-
J. Xu and H. Li. AdaRank: a boosting algorithm for information retrieval. In SIGIR '07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pages 391-398, New York, NY, USA, 2007. ACM. (Pubitemid 350164985)
-
(2007)
Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'07
, pp. 391-398
-
-
Xu, J.1
Li, H.2
-
34
-
-
36448983903
-
A support vector method for optimizing average precision
-
DOI 10.1145/1277741.1277790, Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'07
-
Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, SIGIR '07, pages 271-278, New York, NY, USA, 2007. ACM. (Pubitemid 350164971)
-
(2007)
Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'07
, pp. 271-278
-
-
Yue, Y.1
Finley, T.2
Radlinski, F.3
Joachims, T.4
|