메뉴 건너뛰기




Volumn 33, Issue 6, 2012, Pages 1823-1849

Applying tree-based ensemble algorithms to the classification of ecological zones using multi-temporal multi-source remote-sensing data

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING; DECISION TREES; ECOLOGY; EFFICIENCY; REMOTE SENSING;

EID: 84863257013     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2011.602651     Document Type: Article
Times cited : (63)

References (49)
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E. and Kohavi, R. 1999. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning, 36: 105-139.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0000300305 scopus 로고
    • Phenological events and their environmental triggers in Mojave desert ecosystems
    • Beatley, J.C. 1974. Phenological events and their environmental triggers in Mojave desert ecosystems. Ecology, 55: 856-863.
    • (1974) Ecology , vol.55 , pp. 856-863
    • Beatley, J.C.1
  • 4
    • 68249112096 scopus 로고    scopus 로고
    • Quantifying the aspect effect: An application of solar radiation modeling for soil survey
    • Beaudette, D.E. and O'Geen, A.T. 2009. Quantifying the aspect effect: an application of solar radiation modeling for soil survey. Soil Science Society of America Journal, 73: 1345-1352.
    • (2009) Soil Science Society of America Journal , vol.73 , pp. 1345-1352
    • Beaudette, D.E.1    O'Geen, A.T.2
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996. Bagging predictors. Machine Learning, 24: 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. 2001. Random forests. Machine Learning, 45: 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 9
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of random forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • Chan, J.C.W. and Paelinckx, D. 2008. Evaluation of random forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment, 112: 2999-3011.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 2999-3011
    • Chan, J.C.W.1    Paelinckx, D.2
  • 12
    • 0034476942 scopus 로고    scopus 로고
    • Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data
    • DeFries, R.S. and Chan, J.C.W. 2000. Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data. Remote Sensing of Environment, 74: 503-515.
    • (2000) Remote Sensing of Environment , vol.74 , pp. 503-515
    • de Fries, R.S.1    Chan, J.C.W.2
  • 13
    • 0032216156 scopus 로고    scopus 로고
    • Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers
    • DeFries, R.S., Hansen, M., Townshend, J.R.G. and Sohlberg, R. 1998. Global land cover classifications at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers. International Journal of Remote Sensing, 19: 3141-3168.
    • (1998) International Journal of Remote Sensing , vol.19 , pp. 3141-3168
    • DeFries, R.S.1    Hansen, M.2    Townshend, J.R.G.3    Sohlberg, R.4
  • 16
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund, Y. 1995. Boosting a weak learning algorithm by majority. Information and Computation, 121: 256-285.
    • (1995) Information and Computation , vol.121 , pp. 256-285
    • Freund, Y.1
  • 17
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y. and Schapire, R.E. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55: 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 18
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • Friedl, M.A. and Brodley, C.E. 1997. Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61: 399-409.
    • (1997) Remote Sensing of Environment , vol.61 , pp. 399-409
    • Friedl, M.A.1    Brodley, C.E.2
  • 19
    • 0033100735 scopus 로고    scopus 로고
    • Maximizing land cover classification accuracies produced by decision trees at continental to global scales
    • Friedl, M.A., Brodley, C.E. and Strahler, A.H. 1999. Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Transactions on Geoscience and Remote Sensing, 37: 969-977.
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , pp. 969-977
    • Friedl, M.A.1    Brodley, C.E.2    Strahler, A.H.3
  • 20
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman, J., Hastie, T. and Tibshirani, R. 2000. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28: 337-374.
    • (2000) Annals of Statistics , vol.28 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 22
    • 0037696635 scopus 로고    scopus 로고
    • Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn
    • Goel, P.K., Prasher, S.O., Patel, R.M., Landry, J.A., Bonnell, R.B. and Viau, A.A. 2003. Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agriculture, 39: 67-93.
    • (2003) Computers and Electronics in Agriculture , vol.39 , pp. 67-93
    • Goel, P.K.1    Prasher, S.O.2    Patel, R.M.3    Landry, J.A.4    Bonnell, R.B.5    Viau, A.A.6
  • 23
    • 0029667616 scopus 로고    scopus 로고
    • Classification trees: An alternative to traditional land cover classifiers
    • Hansen, M., Dubayah, R. and DeFries, R. 1996. Classification trees: an alternative to traditional land cover classifiers. International Journal of Remote Sensing, 17: 1075-1081.
    • (1996) International Journal of Remote Sensing , vol.17 , pp. 1075-1081
    • Hansen, M.1    Dubayah, R.2    de Fries, R.3
  • 26
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho, T.K. 1998. The random subspace method for constructing decision forests. IEEE Transactions on Geoscience and Remote Sensing, 20: 832-844.
    • (1998) IEEE Transactions on Geoscience and Remote Sensing , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 27
    • 23744497631 scopus 로고    scopus 로고
    • Classification accuracy of discriminant analysis, artificial neural networks, and decision trees for weed and nitrogen stress detection in corn
    • Karimi, Y., Prasher, S.O., McNairn, H., Bonnell, R.B., Dutilleul, P. and Goel, R.K. 2005. Classification accuracy of discriminant analysis, artificial neural networks, and decision trees for weed and nitrogen stress detection in corn. Transactions of the ASAE, 48: 1261-1268.
    • (2005) Transactions of the ASAE , vol.48 , pp. 1261-1268
    • Karimi, Y.1    Prasher, S.O.2    McNairn, H.3    Bonnell, R.B.4    Dutilleul, P.5    Goel, R.K.6
  • 28
    • 1842431416 scopus 로고    scopus 로고
    • Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis
    • Lawrence, R., Bunn, A., Powell, S. and Zambon, M. 2004. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment, 90: 331-336.
    • (2004) Remote Sensing of Environment , vol.90 , pp. 331-336
    • Lawrence, R.1    Bunn, A.2    Powell, S.3    Zambon, M.4
  • 29
    • 31344453556 scopus 로고    scopus 로고
    • Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest)
    • Lawrence, R.L., Wood, S.D. and Sheley, R.L. 2006. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sensing of Environment, 100: 356-362.
    • (2006) Remote Sensing of Environment , vol.100 , pp. 356-362
    • Lawrence, R.L.1    Wood, S.D.2    Sheley, R.L.3
  • 31
    • 0036327090 scopus 로고    scopus 로고
    • Using prior probabilities in decision-tree classification of remotely sensed data
    • McIver, D.K. and Friedl, M.A. 2002. Using prior probabilities in decision-tree classification of remotely sensed data. Remote Sensing of Environment, 81: 253-261.
    • (2002) Remote Sensing of Environment , vol.81 , pp. 253-261
    • McIver, D.K.1    Friedl, M.A.2
  • 32
    • 0037202441 scopus 로고    scopus 로고
    • Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence
    • Miller, J. and Franklin, J. 2002. Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence. Ecological Modelling, 157: 227-247.
    • (2002) Ecological Modelling , vol.157 , pp. 227-247
    • Miller, J.1    Franklin, J.2
  • 33
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • Pal, M. and Mather, P.M. 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86: 554-565.
    • (2003) Remote Sensing of Environment , vol.86 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 34
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • In: Mammone R.J., editors London: Chapman-Hall
    • Perrone, M.P. and Cooper, L.N. 1992. "When networks disagree: ensemble methods for hybrid neural networks". In Neural Networks for Speech and Image Processing, Edited by: Mammone, R.J. 126-142. London: Chapman-Hall.
    • (1992) Neural Networks for Speech and Image Processing , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 37
    • 0036221284 scopus 로고    scopus 로고
    • A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery
    • Rogan, J., Franklin, J. and Roberts, D.A. 2002. A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sensing of Environment, 80: 143-156.
    • (2002) Remote Sensing of Environment , vol.80 , pp. 143-156
    • Rogan, J.1    Franklin, J.2    Roberts, D.A.3
  • 38
    • 41249103454 scopus 로고    scopus 로고
    • Mapping land-cover modifications over large areas: A comparison of machine learning algorithms
    • Rogan, J., Franklin, J., Stow, D., Miller, J., Woodcock, C. and Roberts, D. 2008. Mapping land-cover modifications over large areas: a comparison of machine learning algorithms. Remote Sensing of Environment, 112: 2272-2283.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 2272-2283
    • Rogan, J.1    Franklin, J.2    Stow, D.3    Miller, J.4    Woodcock, C.5    Roberts, D.6
  • 40
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R.E. 1990. The strength of weak learnability. Machine Learning, 5: 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 41
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R.E. and Singer, Y. 1999. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37: 297-336.
    • (1999) Machine Learning , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 42
    • 0034054414 scopus 로고    scopus 로고
    • Integrating spectral, spatial, and terrain variables for forest ecosystem classification
    • Treitz, P. and Howarth, P. 2000. Integrating spectral, spatial, and terrain variables for forest ecosystem classification. Photogrammetric Engineering and Remote Sensing, 66: 305-317.
    • (2000) Photogrammetric Engineering and Remote Sensing , vol.66 , pp. 305-317
    • Treitz, P.1    Howarth, P.2
  • 44
    • 58149203424 scopus 로고    scopus 로고
    • An annual plant growth proxy in the Mojave desert using MODIS-EVI data
    • Wallace, C.S.A. and Thomas, K.A. 2008. An annual plant growth proxy in the Mojave desert using MODIS-EVI data. Sensors, 8: 7792-7808.
    • (2008) Sensors , vol.8 , pp. 7792-7808
    • Wallace, C.S.A.1    Thomas, K.A.2
  • 45
    • 69849104695 scopus 로고    scopus 로고
    • Classifier ensembles for land cover mapping using multitemporal SAR imagery
    • Waske, B. and Braun, M. 2009. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 64: 450-457.
    • (2009) ISPRS Journal of Photogrammetry and Remote Sensing , vol.64 , pp. 450-457
    • Waske, B.1    Braun, M.2
  • 47
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou, Z.H., Wu, J.X. and Tang, W. 2002. Ensembling neural networks: many could be better than all. Artificial Intelligence, 137: 239-263.
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.X.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.