-
1
-
-
33947231519
-
A comparison of decision tree ensemble creation techniques
-
Banfield, R.E., Hall, L.O., Bowyer, K.W. and Kegelmeyer, W.P. 2007. A comparison of decision tree ensemble creation techniques. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29: 173-180.
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, pp. 173-180
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
2
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E. and Kohavi, R. 1999. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning, 36: 105-139.
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
3
-
-
0000300305
-
Phenological events and their environmental triggers in Mojave desert ecosystems
-
Beatley, J.C. 1974. Phenological events and their environmental triggers in Mojave desert ecosystems. Ecology, 55: 856-863.
-
(1974)
Ecology
, vol.55
, pp. 856-863
-
-
Beatley, J.C.1
-
4
-
-
68249112096
-
Quantifying the aspect effect: An application of solar radiation modeling for soil survey
-
Beaudette, D.E. and O'Geen, A.T. 2009. Quantifying the aspect effect: an application of solar radiation modeling for soil survey. Soil Science Society of America Journal, 73: 1345-1352.
-
(2009)
Soil Science Society of America Journal
, vol.73
, pp. 1345-1352
-
-
Beaudette, D.E.1
O'Geen, A.T.2
-
6
-
-
0030211964
-
Bagging predictors
-
Breiman, L. 1996. Bagging predictors. Machine Learning, 24: 123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
7
-
-
0035478854
-
Random forests
-
Breiman, L. 2001. Random forests. Machine Learning, 45: 5-32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
8
-
-
0036821351
-
Multiple classifiers applied to multisource remote sensing data
-
Briem, G.J., Benediktsson, J.A. and Sveinsson, J.R. 2002. Multiple classifiers applied to multisource remote sensing data. IEEE Transactions on Geoscience and Remote Sensing, 40: 2291-2299.
-
(2002)
IEEE Transactions on Geoscience and Remote Sensing
, vol.40
, pp. 2291-2299
-
-
Briem, G.J.1
Benediktsson, J.A.2
Sveinsson, J.R.3
-
9
-
-
43949125818
-
Evaluation of random forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
-
Chan, J.C.W. and Paelinckx, D. 2008. Evaluation of random forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment, 112: 2999-3011.
-
(2008)
Remote Sensing of Environment
, vol.112
, pp. 2999-3011
-
-
Chan, J.C.W.1
Paelinckx, D.2
-
11
-
-
0038713419
-
National Park vegetation mapping using multitemporal Landsat 7 data and a decision tree classifier
-
De Colstoun, E.C.B., Story, M.H., Thompson, C., Commisso, K., Smith, T.G. and Irons, J.R. 2003. National Park vegetation mapping using multitemporal Landsat 7 data and a decision tree classifier. Remote Sensing of Environment, 85: 316-327.
-
(2003)
Remote Sensing of Environment
, vol.85
, pp. 316-327
-
-
de Colstoun, E.C.B.1
Story, M.H.2
Thompson, C.3
Commisso, K.4
Smith, T.G.5
Irons, J.R.6
-
12
-
-
0034476942
-
Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data
-
DeFries, R.S. and Chan, J.C.W. 2000. Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data. Remote Sensing of Environment, 74: 503-515.
-
(2000)
Remote Sensing of Environment
, vol.74
, pp. 503-515
-
-
de Fries, R.S.1
Chan, J.C.W.2
-
13
-
-
0032216156
-
Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers
-
DeFries, R.S., Hansen, M., Townshend, J.R.G. and Sohlberg, R. 1998. Global land cover classifications at 8 km spatial resolution: the use of training data derived from Landsat imagery in decision tree classifiers. International Journal of Remote Sensing, 19: 3141-3168.
-
(1998)
International Journal of Remote Sensing
, vol.19
, pp. 3141-3168
-
-
DeFries, R.S.1
Hansen, M.2
Townshend, J.R.G.3
Sohlberg, R.4
-
15
-
-
34547111054
-
Mapping a specific class with an ensemble of classifiers
-
Foody, G.M., Boyd, D.S. and Sanchez-Hernandez, C. 2007. Mapping a specific class with an ensemble of classifiers. International Journal of Remote Sensing, 28: 1733-1746.
-
(2007)
International Journal of Remote Sensing
, vol.28
, pp. 1733-1746
-
-
Foody, G.M.1
Boyd, D.S.2
Sanchez-Hernandez, C.3
-
16
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Freund, Y. 1995. Boosting a weak learning algorithm by majority. Information and Computation, 121: 256-285.
-
(1995)
Information and Computation
, vol.121
, pp. 256-285
-
-
Freund, Y.1
-
17
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Freund, Y. and Schapire, R.E. 1997. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55: 119-139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
18
-
-
0344972104
-
Decision tree classification of land cover from remotely sensed data
-
Friedl, M.A. and Brodley, C.E. 1997. Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61: 399-409.
-
(1997)
Remote Sensing of Environment
, vol.61
, pp. 399-409
-
-
Friedl, M.A.1
Brodley, C.E.2
-
19
-
-
0033100735
-
Maximizing land cover classification accuracies produced by decision trees at continental to global scales
-
Friedl, M.A., Brodley, C.E. and Strahler, A.H. 1999. Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Transactions on Geoscience and Remote Sensing, 37: 969-977.
-
(1999)
IEEE Transactions on Geoscience and Remote Sensing
, vol.37
, pp. 969-977
-
-
Friedl, M.A.1
Brodley, C.E.2
Strahler, A.H.3
-
20
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman, J., Hastie, T. and Tibshirani, R. 2000. Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28: 337-374.
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
21
-
-
30344471525
-
Random Forests for land cover classification
-
Gislason, P.O., Benediktsson, J.A. and Sveinsson, J.R. 2006. Random Forests for land cover classification. Pattern Recognition Letters, 27: 294-300.
-
(2006)
Pattern Recognition Letters
, vol.27
, pp. 294-300
-
-
Gislason, P.O.1
Benediktsson, J.A.2
Sveinsson, J.R.3
-
22
-
-
0037696635
-
Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn
-
Goel, P.K., Prasher, S.O., Patel, R.M., Landry, J.A., Bonnell, R.B. and Viau, A.A. 2003. Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agriculture, 39: 67-93.
-
(2003)
Computers and Electronics in Agriculture
, vol.39
, pp. 67-93
-
-
Goel, P.K.1
Prasher, S.O.2
Patel, R.M.3
Landry, J.A.4
Bonnell, R.B.5
Viau, A.A.6
-
23
-
-
0029667616
-
Classification trees: An alternative to traditional land cover classifiers
-
Hansen, M., Dubayah, R. and DeFries, R. 1996. Classification trees: an alternative to traditional land cover classifiers. International Journal of Remote Sensing, 17: 1075-1081.
-
(1996)
International Journal of Remote Sensing
, vol.17
, pp. 1075-1081
-
-
Hansen, M.1
Dubayah, R.2
de Fries, R.3
-
24
-
-
0034655867
-
Global land cover classification at 1 km spatial resolution using a classification tree approach
-
Hansen, M.C., DeFries, R.S., Townshend, J.R.G. and Sohlberg, R. 2000. Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21: 1331-1364.
-
(2000)
International Journal of Remote Sensing
, vol.21
, pp. 1331-1364
-
-
Hansen, M.C.1
de Fries, R.S.2
Townshend, J.R.G.3
Sohlberg, R.4
-
25
-
-
0003684449
-
-
New York: Springer
-
Hastie, T., Tibshirani, R. and Friedman, J. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd, New York: Springer.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
26
-
-
0032139235
-
The random subspace method for constructing decision forests
-
Ho, T.K. 1998. The random subspace method for constructing decision forests. IEEE Transactions on Geoscience and Remote Sensing, 20: 832-844.
-
(1998)
IEEE Transactions on Geoscience and Remote Sensing
, vol.20
, pp. 832-844
-
-
Ho, T.K.1
-
27
-
-
23744497631
-
Classification accuracy of discriminant analysis, artificial neural networks, and decision trees for weed and nitrogen stress detection in corn
-
Karimi, Y., Prasher, S.O., McNairn, H., Bonnell, R.B., Dutilleul, P. and Goel, R.K. 2005. Classification accuracy of discriminant analysis, artificial neural networks, and decision trees for weed and nitrogen stress detection in corn. Transactions of the ASAE, 48: 1261-1268.
-
(2005)
Transactions of the ASAE
, vol.48
, pp. 1261-1268
-
-
Karimi, Y.1
Prasher, S.O.2
McNairn, H.3
Bonnell, R.B.4
Dutilleul, P.5
Goel, R.K.6
-
28
-
-
1842431416
-
Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis
-
Lawrence, R., Bunn, A., Powell, S. and Zambon, M. 2004. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment, 90: 331-336.
-
(2004)
Remote Sensing of Environment
, vol.90
, pp. 331-336
-
-
Lawrence, R.1
Bunn, A.2
Powell, S.3
Zambon, M.4
-
29
-
-
31344453556
-
Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest)
-
Lawrence, R.L., Wood, S.D. and Sheley, R.L. 2006. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sensing of Environment, 100: 356-362.
-
(2006)
Remote Sensing of Environment
, vol.100
, pp. 356-362
-
-
Lawrence, R.L.1
Wood, S.D.2
Sheley, R.L.3
-
30
-
-
34047273026
-
Mapping moderate-scale land-cover over very large geographic areas within a collaborative framework: A case study of the Southwest Regional Gap Analysis Project (SWReGAP)
-
Lowry, J., Ramsey, R.D., Thomas, K., Schrupp, D., Sajwaj, T., Kirby, J., Waller, E., Schrader, S., Falzarano, S., Langs, L., Manis, G., Wallace, C., Schulz, K., Comer, P., Pohs, K., Rieth, W., Velasquez, C., Wolk, B., Kepner, W., Boykin, K., O'brien, L., Bradford, D., Thompson, B. and Prior-Magee, J. 2007. Mapping moderate-scale land-cover over very large geographic areas within a collaborative framework: a case study of the Southwest Regional Gap Analysis Project (SWReGAP). Remote Sensing of Environment, 108: 59-73.
-
(2007)
Remote Sensing of Environment
, vol.108
, pp. 59-73
-
-
Lowry, J.1
Ramsey, R.D.2
Thomas, K.3
Schrupp, D.4
Sajwaj, T.5
Kirby, J.6
Waller, E.7
Schrader, S.8
Falzarano, S.9
Langs, L.10
Manis, G.11
Wallace, C.12
Schulz, K.13
Comer, P.14
Pohs, K.15
Rieth, W.16
Velasquez, C.17
Wolk, B.18
Kepner, W.19
Boykin, K.20
O'brien, L.21
Bradford, D.22
Thompson, B.23
Prior-Magee, J.24
more..
-
31
-
-
0036327090
-
Using prior probabilities in decision-tree classification of remotely sensed data
-
McIver, D.K. and Friedl, M.A. 2002. Using prior probabilities in decision-tree classification of remotely sensed data. Remote Sensing of Environment, 81: 253-261.
-
(2002)
Remote Sensing of Environment
, vol.81
, pp. 253-261
-
-
McIver, D.K.1
Friedl, M.A.2
-
32
-
-
0037202441
-
Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence
-
Miller, J. and Franklin, J. 2002. Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence. Ecological Modelling, 157: 227-247.
-
(2002)
Ecological Modelling
, vol.157
, pp. 227-247
-
-
Miller, J.1
Franklin, J.2
-
33
-
-
0141569007
-
An assessment of the effectiveness of decision tree methods for land cover classification
-
Pal, M. and Mather, P.M. 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86: 554-565.
-
(2003)
Remote Sensing of Environment
, vol.86
, pp. 554-565
-
-
Pal, M.1
Mather, P.M.2
-
34
-
-
0000926506
-
When networks disagree: Ensemble methods for hybrid neural networks
-
In: Mammone R.J., editors London: Chapman-Hall
-
Perrone, M.P. and Cooper, L.N. 1992. "When networks disagree: ensemble methods for hybrid neural networks". In Neural Networks for Speech and Image Processing, Edited by: Mammone, R.J. 126-142. London: Chapman-Hall.
-
(1992)
Neural Networks for Speech and Image Processing
, pp. 126-142
-
-
Perrone, M.P.1
Cooper, L.N.2
-
37
-
-
0036221284
-
A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery
-
Rogan, J., Franklin, J. and Roberts, D.A. 2002. A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sensing of Environment, 80: 143-156.
-
(2002)
Remote Sensing of Environment
, vol.80
, pp. 143-156
-
-
Rogan, J.1
Franklin, J.2
Roberts, D.A.3
-
38
-
-
41249103454
-
Mapping land-cover modifications over large areas: A comparison of machine learning algorithms
-
Rogan, J., Franklin, J., Stow, D., Miller, J., Woodcock, C. and Roberts, D. 2008. Mapping land-cover modifications over large areas: a comparison of machine learning algorithms. Remote Sensing of Environment, 112: 2272-2283.
-
(2008)
Remote Sensing of Environment
, vol.112
, pp. 2272-2283
-
-
Rogan, J.1
Franklin, J.2
Stow, D.3
Miller, J.4
Woodcock, C.5
Roberts, D.6
-
39
-
-
84863288371
-
-
Rollins, M.G., Ward, B.C., Dillon, G., Pratt, S. and Wolf, A., 2007, Developing the LANDFIRE Fire Regime Data Products (LANDFIRE). http://www.landfire.gov/documents_frcc.php
-
(2007)
Developing the LANDFIRE Fire Regime Data Products (LANDFIRE)
-
-
Rollins, M.G.1
Ward, B.C.2
Dillon, G.3
Pratt, S.4
Wolf, A.5
-
40
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R.E. 1990. The strength of weak learnability. Machine Learning, 5: 197-227.
-
(1990)
Machine Learning
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
41
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
Schapire, R.E. and Singer, Y. 1999. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37: 297-336.
-
(1999)
Machine Learning
, vol.37
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
42
-
-
0034054414
-
Integrating spectral, spatial, and terrain variables for forest ecosystem classification
-
Treitz, P. and Howarth, P. 2000. Integrating spectral, spatial, and terrain variables for forest ecosystem classification. Photogrammetric Engineering and Remote Sensing, 66: 305-317.
-
(2000)
Photogrammetric Engineering and Remote Sensing
, vol.66
, pp. 305-317
-
-
Treitz, P.1
Howarth, P.2
-
44
-
-
58149203424
-
An annual plant growth proxy in the Mojave desert using MODIS-EVI data
-
Wallace, C.S.A. and Thomas, K.A. 2008. An annual plant growth proxy in the Mojave desert using MODIS-EVI data. Sensors, 8: 7792-7808.
-
(2008)
Sensors
, vol.8
, pp. 7792-7808
-
-
Wallace, C.S.A.1
Thomas, K.A.2
-
45
-
-
69849104695
-
Classifier ensembles for land cover mapping using multitemporal SAR imagery
-
Waske, B. and Braun, M. 2009. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 64: 450-457.
-
(2009)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.64
, pp. 450-457
-
-
Waske, B.1
Braun, M.2
-
46
-
-
37549018049
-
Top 10 algorithms in data mining
-
Wu, X.D., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.H., Steinbach, M., Hand, D.J. and Steinberg, D. 2008. Top 10 algorithms in data mining. Knowledge and Information Systems, 14: 1-37.
-
(2008)
Knowledge and Information Systems
, vol.14
, pp. 1-37
-
-
Wu, X.D.1
Kumar, V.2
Quinlan, J.R.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Yu, P.S.10
Zhou, Z.H.11
Steinbach, M.12
Hand, D.J.13
Steinberg, D.14
-
47
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Zhou, Z.H., Wu, J.X. and Tang, W. 2002. Ensembling neural networks: many could be better than all. Artificial Intelligence, 137: 239-263.
-
(2002)
Artificial Intelligence
, vol.137
, pp. 239-263
-
-
Zhou, Z.H.1
Wu, J.X.2
Tang, W.3
-
48
-
-
77958028886
-
Multi-class AdaBoost
-
Zhu, J., Zou, H., Rosset, S. and Hastie, T. 2009. Multi-class AdaBoost. Statistics and Its Interface, 2: 349-360.
-
(2009)
Statistics and Its Interface
, vol.2
, pp. 349-360
-
-
Zhu, J.1
Zou, H.2
Rosset, S.3
Hastie, T.4
-
49
-
-
84863279273
-
-
Zhu, Z., Vogelmann, J., Ohlen, D., Kost, J., Chen, X. and Tolk, B. 2006. Mapping existing vegetation composition and structure for the LANDFIRE prototype project, RMRS-GTR-175, USDA, Forest Service.,
-
(2006)
Mapping existing vegetation composition and structure for the LANDFIRE prototype project, RMRS-GTR-175, USDA, Forest Service.
-
-
Zhu, Z.1
Vogelmann, J.2
Ohlen, D.3
Kost, J.4
Chen, X.5
Tolk, B.6
|