메뉴 건너뛰기




Volumn 7, Issue MAY, 2013, Pages

The virtual brain: A simulator of primate brain network dynamics

Author keywords

Connectivity; Connectome; Full brain network model; GPUs; Large scale simulation; Neural field; Neural mass; Python; Time delays; Virtual brain; Web platform

Indexed keywords

ACCESS TO INFORMATION; ARTICLE; BIOINFORMATICS; BRAIN REGION; CLIENT SERVER APPLICATION; COMPUTER INTERFACE; COMPUTER PROGRAM; COMPUTER SIMULATION; ELECTROENCEPHALOGRAPHY; FUNCTIONAL MAGNETIC RESONANCE IMAGING; INFORMATION PROCESSING; INTERNET; MAGNETOENCEPHALOGRAPHY; NERVE CELL NETWORK; NEUROIMAGING; NEUROPHYSIOLOGY; NEUROSCIENCE; PRIMATE; SIGNAL PROCESSING; SIMULATOR; VIRTUAL REALITY;

EID: 84887346193     PISSN: 16625196     EISSN: None     Source Type: Journal    
DOI: 10.3389/fninf.2013.00010     Document Type: Article
Times cited : (339)

References (127)
  • 1
    • 0016640311 scopus 로고
    • Homogeneous nets of neuron-like elements
    • Amari, S. (1975). Homogeneous nets of neuron-like elements. Biol. Cybern., 17(4):211-220.
    • (1975) Biol. Cybern , vol.17 , Issue.4 , pp. 211-220
    • Amari, S.1
  • 2
    • 0017713690 scopus 로고
    • Dynamics of pattern formation in lateralinhibition type neural fields
    • Amari, S. (1977). Dynamics of pattern formation in lateralinhibition type neural fields. Biol. Cybern., 22:77-87.
    • (1977) Biol. Cybern , vol.22 , pp. 77-87
    • Amari, S.1
  • 3
    • 18144421246 scopus 로고    scopus 로고
    • Synchrony and clustering in heterogeneous networks with global coupling and parameter dispersion
    • Assisi, C., Jirsa, V., and Kelso, J. (2005). Synchrony and clustering in heterogeneous networks with global coupling and parameter dispersion. Phys. Rev. Lett., 94(1):94.
    • (2005) Phys. Rev. Lett , vol.94 , Issue.1 , pp. 94
    • Assisi, C.1    Jirsa, V.2    Kelso, J.3
  • 4
    • 85061621736 scopus 로고    scopus 로고
    • Neural fields with distributed transmission speeds and long range feedback delays
    • Atay, F. and Hutt, A. (2006). Neural fields with distributed transmission speeds and long range feedback delays. SIAD, 5(4):670-698.
    • (2006) SIAD , vol.5 , Issue.4 , pp. 670-698
    • Atay, F.1    Hutt, A.2
  • 5
    • 77954387306 scopus 로고    scopus 로고
    • Multi-area neural mass modeling of eeg and meg signals
    • Babajani-Feremi, A. and Soltanian-Zadeh, H. (2010). Multi-area neural mass modeling of eeg and meg signals. Neuroimage, 52(3):793-811.
    • (2010) Neuroimage , vol.52 , Issue.3 , pp. 793-811
    • Babajani-Feremi, A.1    Soltanian-Zadeh, H.2
  • 6
    • 84886749851 scopus 로고    scopus 로고
    • Cocomac 2.0 and the future of tract-tracing databases
    • Bakker, R., Wachtler, T., and Diesmann, M. (2012). Cocomac 2.0 and the future of tract-tracing databases. Front. Neuroinform., 6:30.
    • (2012) Front. Neuroinform , vol.6 , pp. 30
    • Bakker, R.1    Wachtler, T.2    Diesmann, M.3
  • 7
    • 84863529550 scopus 로고    scopus 로고
    • Human cortical connectome reconstruction from diffusion weighted mri: The effect of tractography algorithm
    • Bastiani, M., Shah, N. J., Goebel, R., and Roebroeck, A. (2012). Human cortical connectome reconstruction from diffusion weighted mri: the effect of tractography algorithm. Neuroimage, 62(3):1732-1749.
    • (2012) Neuroimage , vol.62 , Issue.3 , pp. 1732-1749
    • Bastiani, M.1    Shah, N.J.2    Goebel, R.3    Roebroeck, A.4
  • 8
    • 0002552571 scopus 로고
    • Properties of a mass of cells capable of regenerating pulses
    • Beurle, R. L. (1956). Properties of a mass of cells capable of regenerating pulses. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 240(669):55-94.
    • (1956) Philos. Trans. R. Soc. Lond. B. Biol. Sci , vol.240 , Issue.669 , pp. 55-94
    • Beurle, R.L.1
  • 9
    • 76749137651 scopus 로고    scopus 로고
    • Axonal velocity distributions in neural field equations
    • Bojak, I. and Liley, D. T. J. (2010). Axonal velocity distributions in neural field equations. PLoS Comput. Biol., 6(1):e1000653.
    • (2010) PLoS Comput. Biol , vol.6 , Issue.1
    • Bojak, I.1    Liley, D.T.J.2
  • 10
    • 80054999722 scopus 로고    scopus 로고
    • Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes
    • Bojak, I., Oostendorp, T., Reid, A., and Kötter, R. (2011). Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes. Philos. Trans. R Soc. Lond. A., 369(1952):3785-3801.
    • (2011) Philos. Trans. R Soc. Lond. A , vol.369 , Issue.1952 , pp. 3785-3801
    • Bojak, I.1    Oostendorp, T.2    Reid, A.3    Kötter, R.4
  • 11
    • 77954534490 scopus 로고    scopus 로고
    • Connecting mean field models of neural activity to eeg and fmri data
    • Bojak, I., Oostendorp, T., Reid, A. (2010). Connecting mean field models of neural activity to eeg and fmri data. Brain Topogr., 23(2):139-149.
    • (2010) Brain Topogr , vol.23 , Issue.2 , pp. 139-149
    • Bojak, I.1    Oostendorp, T.2    Reid, A.3
  • 14
    • 33747891705 scopus 로고    scopus 로고
    • A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis
    • Breakspear, M., Roberts, J. A., Terry, J. R., Rodrigues, S., Mahant, N., and Robinson, P. A. (2006). A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex, 16(9):1296-1313.
    • (2006) Cereb. Cortex , vol.16 , Issue.9 , pp. 1296-1313
    • Breakspear, M.1    Roberts, J.A.2    Terry, J.R.3    Rodrigues, S.4    Mahant, N.5    Robinson, P.A.6
  • 15
    • 0346365199 scopus 로고    scopus 로고
    • Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics
    • Breakspear, M., Terry, J. R., and Friston, K. J. (2003). Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Network, 14(4):703-732.
    • (2003) Network , vol.14 , Issue.4 , pp. 703-732
    • Breakspear, M.1    Terry, J.R.2    Friston, K.J.3
  • 16
    • 84859482937 scopus 로고    scopus 로고
    • From invasion to extinction in heterogeneous neural fields
    • Bressloff, P. C. (2012). From invasion to extinction in heterogeneous neural fields. JMN., 2(1):6.
    • (2012) JMN , vol.2 , Issue.1 , pp. 6
    • Bressloff, P.C.1
  • 17
    • 79958292145 scopus 로고    scopus 로고
    • Vectorized algorithms for spiking neural network simulation
    • Brette, R. and Goodman, D. F. M. (2011). Vectorized algorithms for spiking neural network simulation. Neural Comput., 23(6):1503-1535.
    • (2011) Neural Comput , vol.23 , Issue.6 , pp. 1503-1535
    • Brette, R.1    Goodman, D.F.M.2
  • 18
    • 0034814469 scopus 로고    scopus 로고
    • Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition
    • Brunel, N. and Wang, X.-J. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J. Comput. Neurosci., 11:63-85.
    • (2001) J. Comput. Neurosci , vol.11 , pp. 63-85
    • Brunel, N.1    Wang, X.-J.2
  • 19
    • 0038162289 scopus 로고    scopus 로고
    • What determines the frequency of fast network oscillations with irregular neural discharges? i. synaptic dynamics and excitation-inhibition balance
    • Brunel, N. and Wang, X.-J. (2003). What determines the frequency of fast network oscillations with irregular neural discharges? i. synaptic dynamics and excitation-inhibition balance. J. Neurophysiol., 90:415-430.
    • (2003) J. Neurophysiol , vol.90 , pp. 415-430
    • Brunel, N.1    Wang, X.-J.2
  • 20
    • 60549103853 scopus 로고    scopus 로고
    • Complex brain networks: Graph theoretical analysis of structural and functional systems
    • Bullmore, E. and Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci., 10(3):186-198.
    • (2009) Nat. Rev. Neurosci , vol.10 , Issue.3 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 21
    • 1542512456 scopus 로고    scopus 로고
    • Numerical methods for strong solutions of stochastic differential equations: An overview
    • Burrage, K., Burrage, P. M., and Tian, T. (2004). Numerical methods for strong solutions of stochastic differential equations: an overview. Proc. R. Soc. London, Ser. A, 460(2041):373-402.
    • (2004) Proc. R. Soc. London, Ser. A , vol.460 , Issue.2041 , pp. 373-402
    • Burrage, K.1    Burrage, P.M.2    Tian, T.3
  • 22
    • 0031021275 scopus 로고    scopus 로고
    • A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation
    • Buxton, R. and Frank, L. (1997). A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J. Cereb. Blood Flow Metab., 17:64-72.
    • (1997) J. Cereb. Blood Flow Metab , vol.17 , pp. 64-72
    • Buxton, R.1    Frank, L.2
  • 23
    • 84912057909 scopus 로고    scopus 로고
    • Chacon, S, Pro Git. Apress,. Oxford University Press
    • Buzsaki, G. (2006). Rhythms of the Brain. Oxford University Press. Chacon, S. (2009). Pro Git. Apress.
    • (2009) Rhythms of the Brain
    • Buzsaki, G.1
  • 24
    • 77954386847 scopus 로고    scopus 로고
    • Large-scale neural dynamics: Simple and complex
    • Coombes, S. (2010). Large-scale neural dynamics: simple and complex. Neuroimage, 52(3):731-739.
    • (2010) Neuroimage , vol.52 , Issue.3 , pp. 731-739
    • Coombes, S.1
  • 26
    • 1842722362 scopus 로고    scopus 로고
    • Multiscale entropy analysis of complex physiologic time series
    • Costa, M., Goldberger, A. L., and Peng, C.-K. (2002). Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett., 89(6):068102.
    • (2002) Phys. Rev. Lett , vol.89 , Issue.6 , pp. 068102
    • Costa, M.1    Goldberger, A.L.2    Peng, C.-K.3
  • 28
    • 33745183321 scopus 로고    scopus 로고
    • Mechanisms of evoked and induced responses in meg/eeg
    • David, O., Kilner, J. M., and Friston, K. J. (2006). Mechanisms of evoked and induced responses in meg/eeg. Neuroimage, 31(4):1580-1591.
    • (2006) Neuroimage , vol.31 , Issue.4 , pp. 1580-1591
    • David, O.1    Kilner, J.M.2    Friston, K.J.3
  • 29
    • 84857802687 scopus 로고    scopus 로고
    • Ongoing cortical activity at rest: Criticality, multistability, and ghost attractors
    • Deco, G. and Jirsa, V. (2012). Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci., 32(10):3366-3375.
    • (2012) J. Neurosci , vol.32 , Issue.10 , pp. 3366-3375
    • Deco, G.1    Jirsa, V.2
  • 30
    • 78650339790 scopus 로고    scopus 로고
    • Emerging concepts for the dynamical organization of resting-state activity in the brain
    • Deco, G., Jirsa, V., and McIntosh, A. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci., 12(1):43-56.
    • (2011) Nat. Rev. Neurosci , vol.12 , Issue.1 , pp. 43-56
    • Deco, G.1    Jirsa, V.2    McIntosh, A.3
  • 31
    • 67649886440 scopus 로고    scopus 로고
    • Key role of coupling, delay, and noise in resting brain fluctuations
    • Deco, G., Jirsa, V., McIntosh, A., Sporns, O., and Kötter, R. (2009). Key role of coupling, delay, and noise in resting brain fluctuations. Proc. Natl. Acad. Sci. U.S.A., 106(25):10302-10307.
    • (2009) Proc. Natl. Acad. Sci. U.S.A , vol.106 , Issue.25 , pp. 10302-10307
    • Deco, G.1    Jirsa, V.2    McIntosh, A.3    Sporns, O.4    Kötter, R.5
  • 32
    • 50949089019 scopus 로고    scopus 로고
    • The dynamic brain: From spiking neurons to neural masses and cortical fields
    • Deco, G., Jirsa, V., Robinson, P. A., Breakspear, M., and Friston, K. (2008). The dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS Comput. Biol., 4(8):e1000092.
    • (2008) PLoS Comput. Biol , vol.4 , Issue.8
    • Deco, G.1    Jirsa, V.2    Robinson, P.A.3    Breakspear, M.4    Friston, K.5
  • 33
    • 77956633623 scopus 로고    scopus 로고
    • An invitation to reproducible computational research
    • Donoho, D. L. (2010). An invitation to reproducible computational research. Biostatistics, 11(3):385-388.
    • (2010) Biostatistics , vol.11 , Issue.3 , pp. 385-388
    • Donoho, D.L.1
  • 36
    • 84862993537 scopus 로고    scopus 로고
    • The future of the human connectome
    • Essen, D. C. V. and Ugurbil, K. (2012). The future of the human connectome. Neuroimage, 62(2):1299-1310.
    • (2012) Neuroimage , vol.62 , Issue.2 , pp. 1299-1310
    • Essen, D.C.V.1    Ugurbil, K.2
  • 37
    • 53349102813 scopus 로고
    • Impulses and physiological states in theoretical models of nerve membrane
    • FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1(6):445-466.
    • (1961) Biophys. J , vol.1 , Issue.6 , pp. 445-466
    • Fitzhugh, R.1
  • 38
    • 0000343984 scopus 로고
    • Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise
    • Fox, R., Gatland, I., Rot, R., and Vemuri, G. (1988). Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys. Rev. A, 38(11):5938-5940.
    • (1988) Phys. Rev. A , vol.38 , Issue.11 , pp. 5938-5940
    • Fox, R.1    Gatland, I.2    Rot, R.3    Vemuri, G.4
  • 40
    • 0000418266 scopus 로고
    • Tutorial on neurobiology: From single neurons to brain chaos
    • Freeman, W. J. (1992). Tutorial on neurobiology: from single neurons to brain chaos. International Journal of Bifurcation and Chaos, 2:451-482.
    • (1992) International Journal of Bifurcation and Chaos , vol.2 , pp. 451-482
    • Freeman, W.J.1
  • 42
    • 84864087991 scopus 로고    scopus 로고
    • Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline
    • Freyer, F., Reinacher, M., Nolte, G., Dinse, H. R., and Ritter, P. (2012). Repetitive tactile stimulation changes resting-state functional connectivity-implications for treatment of sensorimotor decline. Front. Hum. Neurosci., 6:144.
    • (2012) Front. Hum Neurosci , vol.6 , pp. 144
    • Freyer, F.1    Reinacher, M.2    Nolte, G.3    Dinse, H.R.4    Ritter, P.5
  • 43
    • 79955766627 scopus 로고    scopus 로고
    • Biophysical mechanisms of multistability in resting-state cortical rhythms
    • Freyer, F., Roberts, J. A., Becker, R., Robinson, P. A., Ritter, P., and Breakspear, M. (2011). Biophysical mechanisms of multistability in resting-state cortical rhythms. J. Neurosci., 31(17):6353-6361.
    • (2011) J. Neurosci , vol.31 , Issue.17 , pp. 6353-6361
    • Freyer, F.1    Roberts, J.A.2    Becker, R.3    Robinson, P.A.4    Ritter, P.5    Breakspear, M.6
  • 44
    • 0041924877 scopus 로고    scopus 로고
    • Dynamic causal modelling
    • Friston, K., Harrison, L., and Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19:1273-1302.
    • (2003) Neuroimage , vol.19 , pp. 1273-1302
    • Friston, K.1    Harrison, L.2    Penny, W.3
  • 46
    • 0033778839 scopus 로고    scopus 로고
    • Nonlinear responses in fmri: The balloon model, volterra kernels, and other hemodynamics
    • Friston, K. J., Mechelli, A., Turner, R., and Price, C. J. (2000). Nonlinear responses in fmri: the balloon model, volterra kernels, and other hemodynamics. Neuroimage, 12(4):466-477.
    • (2000) Neuroimage , vol.12 , Issue.4 , pp. 466-477
    • Friston, K.J.1    Mechelli, A.2    Turner, R.3    Price, C.J.4
  • 47
    • 84993995154 scopus 로고    scopus 로고
    • The connectome viewer toolkit: An open source framework to manage, analyze, and visualize connectomes
    • Gerhard, S., Daducci, A., Lemkaddem, A., Meuli, R., Thiran, J. P., and Hagmann, P. (2011). The connectome viewer toolkit: an open source framework to manage, analyze, and visualize connectomes. Front. Neuroinform., 5:3.
    • (2011) Front Neuroinform , vol.5 , pp. 3
    • Gerhard, S.1    Daducci, A.2    Lemkaddem, A.3    Meuli, R.4    Thiran, J.P.5    Hagmann, P.6
  • 48
    • 43949092150 scopus 로고    scopus 로고
    • NEST (neural simulation tool)
    • Gewaltig, M. and Diesmann, M. (2007). NEST (neural simulation tool). Scholarpedia, 2(4):1430.
    • (2007) Scholarpedia , vol.2 , Issue.4 , pp. 1430
    • Gewaltig, M.1    Diesmann, M.2
  • 49
    • 55449107481 scopus 로고    scopus 로고
    • Noise during rest enables the exploration of the brain's dynamic repertoire
    • Ghosh, A., Rho, Y., McIntosh, A., Kötter, R., and Jirsa, V. (2008). Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput. Biol., 4(10):e1000196-e1000196.
    • (2008) PLoS Comput. Biol , vol.4 , Issue.10
    • Ghosh, A.1    Rho, Y.2    McIntosh, A.3    Kötter, R.4    Jirsa, V.5
  • 50
    • 0026565214 scopus 로고
    • Separate visual pathways for perception and action
    • Goodale, M. A. and Milner, A. D. (1992). Separate visual pathways for perception and action. Trends Neurosci., 15(1):20-25.
    • (1992) Trends Neurosci , vol.15 , Issue.1 , pp. 20-25
    • Goodale, M.A.1    Milner, A.D.2
  • 51
    • 84885847922 scopus 로고    scopus 로고
    • Rian: A simulator for spiking neural networks in python
    • Goodman, D. F. M. and Brette, R. (2008). Rian: a simulator for spiking neural networks in python. Front. Neuroinform., 2:5.
    • (2008) Front Neuroinform , vol.2 , pp. 5
    • Goodman, D.F.M.1    Brette, R.2
  • 52
    • 84892640984 scopus 로고    scopus 로고
    • The brian simulator
    • Goodman, D. F. M. and Brette, R. (2009). The brian simulator. Front. Neurosc., 3(2):192-197.
    • (2009) Front Neurosc , vol.3 , Issue.2 , pp. 192-197
    • Goodman, D.F.M.1    Brette, R.2
  • 53
    • 77956464128 scopus 로고    scopus 로고
    • Openmeeg: Opensource software for quasistatic bioelectromagnetics
    • Gramfort, A., Papadopoulo, T., Olivi, E., and Clerc, M. (2010). Openmeeg: opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online, 9:45.
    • (2010) Biomed. Eng. Online , vol.9 , pp. 45
    • Gramfort, A.1    Papadopoulo, T.2    Olivi, E.3    Clerc, M.4
  • 56
    • 0034813304 scopus 로고    scopus 로고
    • Delay, noise and phase locking in pulse coupled neural networks
    • Haken, H. (2001). Delay, noise and phase locking in pulse coupled neural networks. Biosystems, 63(1-3):15-20.
    • (2001) Biosystems , vol.63 , Issue.1-3 , pp. 15-20
    • Haken, H.1
  • 57
    • 0021768729 scopus 로고
    • A model of neuronal bursting using three coupled first order differential equations
    • Hindmarsh, J. and Rose, R. (1984). A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. London, Ser. B, 221(1222):87-122.
    • (1984) Proc. R. Soc. London, Ser. B , vol.221 , Issue.1222 , pp. 87-122
    • Hindmarsh, J.1    Rose, R.2
  • 59
    • 0035080096 scopus 로고    scopus 로고
    • Neuron: A tool for neuroscientists
    • Hines, M. L. and Carnevale, N. T. (2001). Neuron: a tool for neuroscientists. Neuroscientist., 7(2):123-135.
    • (2001) Neuroscientist , vol.7 , Issue.2 , pp. 123-135
    • Hines, M.L.1    Carnevale, N.T.2
  • 61
    • 34247493236 scopus 로고    scopus 로고
    • Matplotlib: A 2d graphics environment
    • Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in science & engineering, 9(3):90-95.
    • (2007) Computing In Science & Engineering , vol.9 , Issue.3 , pp. 90-95
    • Hunter, J.D.1
  • 62
    • 0027083167 scopus 로고
    • Magnetoencephalography: A tool for functional brain imaging
    • Hämäläinen, M. S. (1992). Magnetoencephalography: a tool for functional brain imaging. Brain Topogr., 5(2):95-102.
    • (1992) Brain Topogr , vol.5 , Issue.2 , pp. 95-102
    • Hämäläinen, M.S.1
  • 63
    • 26244462082 scopus 로고
    • Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain
    • Hämäläinen, M. S., Hari, R., Ilmoniemi, R. J., Knuutila, J., and Lounasmaa, O. V. (1993). Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Modern Phys., 65(2):413-497.
    • (1993) Rev. Modern Phys , vol.65 , Issue.2 , pp. 413-497
    • Hämäläinen, M.S.1    Hari, R.2    Ilmoniemi, R.J.3    Knuutila, J.4    Lounasmaa, O.V.5
  • 64
    • 0029374946 scopus 로고
    • Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns
    • Jansen, B. and Rit, V. (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern., 73(4):357-366.
    • (1995) Biol. Cybern , vol.73 , Issue.4 , pp. 357-366
    • Jansen, B.1    Rit, V.2
  • 65
    • 0027345580 scopus 로고
    • A neurophysiologically-based mathematical model of flash visual evoked potentials
    • Jansen, B., Zouridakis, G., and Brandt, M. (1993). A neurophysiologically-based mathematical model of flash visual evoked potentials. Biol. Cybern., 68(3):275-283.
    • (1993) Biol. Cybern , vol.68 , Issue.3 , pp. 275-283
    • Jansen, B.1    Zouridakis, G.2    Brandt, M.3
  • 66
    • 6344291300 scopus 로고    scopus 로고
    • Connectivity and dynamics of neural information processing
    • Jirsa, V. (2004). Connectivity and dynamics of neural information processing. Neuroinformatics, 2(2):183-204.
    • (2004) Neuroinformatics , vol.2 , Issue.2 , pp. 183-204
    • Jirsa, V.1
  • 67
    • 0000456175 scopus 로고    scopus 로고
    • Field theory of electromagnetic brain activity
    • Jirsa, V. and Haken, H. (1996). Field theory of electromagnetic brain activity. Phys. Rev. Lett., 77(5):960-963.
    • (1996) Phys. Rev. Lett , vol.77 , Issue.5 , pp. 960-963
    • Jirsa, V.1    Haken, H.2
  • 68
    • 0030786828 scopus 로고    scopus 로고
    • A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics
    • Jirsa, V. and Haken, H. (1997). A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Phys. D, 99(4):503-526
    • (1997) Phys. D , vol.99 , Issue.4 , pp. 503-526
    • Jirsa, V.1    Haken, H.2
  • 69
    • 0036557911 scopus 로고    scopus 로고
    • Spatiotemporal forward solution of the eeg and meg using network modeling
    • Jirsa, V., Jantzen, K., Fuchs, A., and Kelso, J. (2002). Spatiotemporal forward solution of the eeg and meg using network modeling. IEEE Trans. Med. Imag., 21(5):493-504.
    • (2002) IEEE Trans. Med. Imag , vol.21 , Issue.5 , pp. 493-504
    • Jirsa, V.1    Jantzen, K.2    Fuchs, A.3    Kelso, J.4
  • 70
    • 0034352134 scopus 로고    scopus 로고
    • Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies
    • Jirsa, V. and Kelso, J. A. (2000). Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top., 62(6 Pt B):8462-8465.
    • (2000) Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top , vol.62 , Issue.6 PART. B , pp. 8462-8465
    • Jirsa, V.1    Kelso, J.A.2
  • 71
    • 78650493262 scopus 로고    scopus 로고
    • Towards the virtual brain: Network modeling of the intact and the damaged brain
    • Jirsa, V., Sporns, O., Breakspear, M., Deco, G., and McIntosh, A. R. (2010). Towards the virtual brain: network modeling of the intact and the damaged brain. Arch. Ital. Biol., 148(3):189-205.
    • (2010) Arch. Ital. Biol , vol.148 , Issue.3 , pp. 189-205
    • Jirsa, V.1    Sporns, O.2    Breakspear, M.3    Deco, G.4    McIntosh, A.R.5
  • 72
    • 79952107080 scopus 로고    scopus 로고
    • Neural population modes capture biologically realistic large scale network dynamics
    • Jirsa, V. and Stefanescu, R. (2010). Neural population modes capture biologically realistic large scale network dynamics. Bull. Math. Biol., 73(2):325-343.
    • (2010) Bull. Math. Biol , vol.73 , Issue.2 , pp. 325-343
    • Jirsa, V.1    Stefanescu, R.2
  • 73
    • 84875349620 scopus 로고
    • Dynamic patterns: The self-organization of brain and behavior (Complex Adaptive Systems)
    • Kelso, S. (1995). Dynamic patterns: the self-organization of brain and behavior (Complex Adaptive Systems). MIT Press.
    • (1995) MIT Press
    • Kelso, S.1
  • 74
    • 0032607559 scopus 로고    scopus 로고
    • The ten-twenty electrode system of the international federation. the international federation of clinical neurophysiology
    • Klem, G. H., Lüders, H. O., Jasper, H. H., and Elger, C. (1999). The ten-twenty electrode system of the international federation. the international federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. Suppl., 52:3-6.
    • (1999) Electroencephalogr. Clin. Neurophysiol. Suppl , vol.52 , pp. 3-6
    • Klem, G.H.1    Lüders, H.O.2    Jasper, H.H.3    Elger, C.4
  • 76
    • 69549095714 scopus 로고    scopus 로고
    • The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models
    • Knock, S., McIntosh, A., Sporns, O., Kötter, R., Hagmann, P., and Jirsa, V. (2009). The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models. J. Neurosci. Methods, 183(1):86-94.
    • (2009) J. Neurosci. Methods , vol.183 , Issue.1 , pp. 86-94
    • Knock, S.1    McIntosh, A.2    Sporns, O.3    Kötter, R.4    Hagmann, P.5    Jirsa, V.6
  • 77
    • 6344245918 scopus 로고    scopus 로고
    • Online retrieval, processing, and visualization of primate connectivity data from the cocomac database
    • Kötter, R. (2004). Online retrieval, processing, and visualization of primate connectivity data from the cocomac database. Neuroinformatics, 2(2):127-144.
    • (2004) Neuroinformatics , vol.2 , Issue.2 , pp. 127-144
    • Kötter, R.1
  • 79
    • 78651285378 scopus 로고    scopus 로고
    • Accurate estimation of entropy in very short physiological time series: The problem of atrial fibrillation detection in implanted ventricular devices
    • Lake, D. E. and Moorman, J. R. (2011). Accurate estimation of entropy in very short physiological time series: the problem of atrial fibrillation detection in implanted ventricular devices. Am. J. Physiol. Heart Circ. Physiol., 300(1):H319-H325.
    • (2011) Am. J. Physiol. Heart Circ. Physiol , vol.300 , Issue.1
    • Lake, D.E.1    Moorman, J.R.2
  • 80
    • 32044470713 scopus 로고    scopus 로고
    • Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents
    • Liley, D. T. J. and Bojak, I. (2005). Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. J. Clin. Neurophysiol., 22(5):300-313.
    • (2005) J. Clin. Neurophysiol , vol.22 , Issue.5 , pp. 300-313
    • Liley, D.T.J.1    Bojak, I.2
  • 81
    • 0035849892 scopus 로고    scopus 로고
    • Neurophysiological investigation of the basis of the fmri signal
    • Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fmri signal. Nature, 412(6843):150-157.
    • (2001) Nature , vol.412 , Issue.6843 , pp. 150-157
    • Logothetis, N.K.1    Pauls, J.2    Augath, M.3    Trinath, T.4    Oeltermann, A.5
  • 84
    • 0032988746 scopus 로고    scopus 로고
    • Eeg and meg: Forward solutions for inverse methods
    • Mosher, J., Leahy, R., and Lewis, P. (1999). Eeg and meg: forward solutions for inverse methods. IEEE Trans. Biomed. Eng., 46:245-259.
    • (1999) IEEE Trans. Biomed. Eng , vol.46 , pp. 245-259
    • Mosher, J.1    Leahy, R.2    Lewis, P.3
  • 85
    • 6344238035 scopus 로고
    • An active pulse transmission line simulating nerve axon
    • Nagumo, J. (1962). An active pulse transmission line simulating nerve axon. Proc. IRE., 50(10):2061-2070.
    • (1962) Proc. IRE , vol.50 , Issue.10 , pp. 2061-2070
    • Nagumo, J.1
  • 87
    • 4444355027 scopus 로고    scopus 로고
    • Identifying true brain interaction from eeg data using the imaginary part of coherency
    • Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., and Hallett, M. (2004). Identifying true brain interaction from eeg data using the imaginary part of coherency. Clin. Neurophysiol., 115(10):2292-2307.
    • (2004) Clin. Neurophysiol , vol.115 , Issue.10 , pp. 2292-2307
    • Nolte, G.1    Bai, O.2    Wheaton, L.3    Mari, Z.4    Vorbach, S.5    Hallett, M.6
  • 90
    • 0016251737 scopus 로고
    • The brain wave equation: A model for the eeg
    • Nunez, P. (1974). The brain wave equation: A model for the eeg. Math. Biosci., 21(3-4):279-297.
    • (1974) Math. Biosci , vol.21 , Issue.3-4 , pp. 279-297
    • Nunez, P.1
  • 91
    • 0031803522 scopus 로고    scopus 로고
    • On the characteristics of functional magnetic resonance imaging of the brain
    • Ogawa, S., Menon, R. S., Kim, S. G., and Ugurbil, K. (1998). On the characteristics of functional magnetic resonance imaging of the brain. Annu. Rev. Biophys. Biomol. Struct., 27:447-474.
    • (1998) Annu. Rev. Biophys. Biomol. Struct , vol.27 , pp. 447-474
    • Ogawa, S.1    Menon, R.S.2    Kim, S.G.3    Ugurbil, K.4
  • 92
    • 0027263961 scopus 로고
    • Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. a comparison of signal characteristics with a biophysical model
    • Ogawa, S., Menon, R. S., Tank, D. W., Kim, S. G., Merkle, H., Ellermann, J. M., and Ugurbil, K. (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. a comparison of signal characteristics with a biophysical model. Biophys. J., 64(3):803-812.
    • (1993) Biophys. J , vol.64 , Issue.3 , pp. 803-812
    • Ogawa, S.1    Menon, R.S.2    Tank, D.W.3    Kim, S.G.4    Merkle, H.5    Ellermann, J.M.6    Ugurbil, K.7
  • 94
    • 77954383001 scopus 로고    scopus 로고
    • Pcsim: A parallel simulation environment for neural circuits fully integrated with python
    • Pecevski, D., Natschläger, T., and Schuch, K. (2009). Pcsim: A parallel simulation environment for neural circuits fully integrated with python. Front. Neuroinform., 3:11.
    • (2009) Front. Neuroinform , vol.3 , pp. 11
    • Pecevski, D.1    Natschläger, T.2    Schuch, K.3
  • 96
    • 78951470377 scopus 로고    scopus 로고
    • Neural fields, spectral responses and lateral connections
    • Pinotsis, D. A. and Friston, K. J. (2011). Neural fields, spectral responses and lateral connections. Neuroimage, 55(1):39-48.
    • (2011) Neuroimage , vol.55 , Issue.1 , pp. 39-48
    • Pinotsis, D.A.1    Friston, K.J.2
  • 97
    • 83055181209 scopus 로고    scopus 로고
    • Dynamic causal modeling with neural fields
    • Pinotsis, D. A., Moran, R. J., and Friston, K. J. (2012). Dynamic causal modeling with neural fields. Neuroimage, 59(2):1261-1274.
    • (2012) Neuroimage , vol.59 , Issue.2 , pp. 1261-1274
    • Pinotsis, D.A.1    Moran, R.J.2    Friston, K.J.3
  • 99
    • 77949823666 scopus 로고    scopus 로고
    • Pymoose: Interoperable scripting in python for moose
    • Ray, S. and Bhalla, U. S. (2008). Pymoose: Interoperable scripting in python for moose. Front. Neuroinform., 2:6.
    • (2008) Front. Neuroinform , vol.2 , pp. 6
    • Ray, S.1    Bhalla, U.S.2
  • 100
    • 0001473827 scopus 로고    scopus 로고
    • Effects of local feedback on dispersion of electrical waves in the cerebral cortex
    • Rennie, C. J., Robinson, P. A., and Wright, J. J. (1999). Effects of local feedback on dispersion of electrical waves in the cerebral cortex. Phys. Rev. E (3), 59:3320-3329.
    • (1999) Phys. Rev. E (3) , vol.59 , pp. 3320-3329
    • Rennie, C.J.1    Robinson, P.A.2    Wright, J.J.3
  • 101
    • 0036599227 scopus 로고    scopus 로고
    • Unified neurophysical model of eeg spectra and evoked potentials
    • Rennie, C. J., Robinson, P. A., and Wright, J. J. (2002). Unified neurophysical model of eeg spectra and evoked potentials. Biol. Cybern., 86(6):457-471.
    • (2002) Biol. Cybern , vol.86 , Issue.6 , pp. 457-471
    • Rennie, C.J.1    Robinson, P.A.2    Wright, J.J.3
  • 102
    • 25444530035 scopus 로고    scopus 로고
    • Fusing eeg and fmri based on a bottom-up model: Inferring activation and effective connectivity in neural masses
    • Riera, J., Aubert, E., Iwata, K., Kawashima, R., Wan, X., and Ozaki, T. (2005). Fusing eeg and fmri based on a bottom-up model: inferring activation and effective connectivity in neural masses. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 360(1457):1025-1041.
    • (2005) Philos. Trans. R. Soc. Lond. B. Biol. Sci , vol.360 , Issue.1457 , pp. 1025-1041
    • Riera, J.1    Aubert, E.2    Iwata, K.3    Kawashima, R.4    Wan, X.5    Ozaki, T.6
  • 103
    • 85018936667 scopus 로고    scopus 로고
    • The virtual brain integrates computational modelling and multimodal neuroimaging
    • In press:[Epub ahead of print]
    • Ritter, P., Schirner, M., McIntosh, A., and VK, J. (2013). The virtual brain integrates computational modelling and multimodal neuroimaging. Brain Connectivity, In press:[Epub ahead of print].
    • (2013) Brain Connectivity
    • Ritter, P.1    Schirner, M.2    McIntosh, A.3    Vk, J.4
  • 104
    • 0001545699 scopus 로고    scopus 로고
    • Propagation and stability of waves of electrical activity in the cerebral cortex
    • Robinson, P., Rennie, C., and Wright, J. (1997). Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E, 56:826-840.
    • (1997) Phys. Rev. E , vol.56 , pp. 826-840
    • Robinson, P.1    Rennie, C.2    Wright, J.3
  • 105
    • 79960503650 scopus 로고    scopus 로고
    • Neural field theory of synaptic plasticity
    • Robinson, P. A. (2011). Neural field theory of synaptic plasticity. J. Theor. Biol., 285(1):156-163.
    • (2011) J. Theor. Biol , vol.285 , Issue.1 , pp. 156-163
    • Robinson, P.A.1
  • 108
    • 6344263667 scopus 로고    scopus 로고
    • Estimation of neurophysiological parameters from the waking eeg using a biophysical model of brain dynamics
    • Rowe, D. L., Robinson, P. A., and Rennie, C. J. (2004). Estimation of neurophysiological parameters from the waking eeg using a biophysical model of brain dynamics. J. Theor. Biol., 231(3):413-433.
    • (2004) J. Theor. Biol , vol.231 , Issue.3 , pp. 413-433
    • Rowe, D.L.1    Robinson, P.A.2    Rennie, C.J.3
  • 109
    • 77954385460 scopus 로고    scopus 로고
    • Complex network measures of brain connectivity: Uses and interpretations
    • Rubinov, M. and Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52(3):1059-1069.
    • (2010) Neuroimage , vol.52 , Issue.3 , pp. 1059-1069
    • Rubinov, M.1    Sporns, O.2
  • 110
    • 0023158840 scopus 로고
    • Basic mathematical and electromagnetic concepts of the biomagnetic inverse problems
    • Sarvas, J. (1987). Basic mathematical and electromagnetic concepts of the biomagnetic inverse problems. Phys. Med. Biol., 32(1):11-22.
    • (1987) Phys. Med. Biol , vol.32 , Issue.1 , pp. 11-22
    • Sarvas, J.1
  • 111
    • 0014693380 scopus 로고
    • Two visual systems
    • Schneider, G. E. (1969). Two visual systems. Science, 163(3870):895-902.
    • (1969) Science , vol.163 , Issue.3870 , pp. 895-902
    • Schneider, G.E.1
  • 112
    • 84858710481 scopus 로고    scopus 로고
    • Structural connectivity allows for multi-threading during rest: The structure of the cortex leads to efficient alternation between resting state exploratory behavior and default mode processing
    • Senden, M., Goebel, R., and Deco, G. (2012). Structural connectivity allows for multi-threading during rest: the structure of the cortex leads to efficient alternation between resting state exploratory behavior and default mode processing. Neuroimage, 60(4):2274-2284.
    • (2012) Neuroimage , vol.60 , Issue.4 , pp. 2274-2284
    • Senden, M.1    Goebel, R.2    Deco, G.3
  • 114
    • 36148967688 scopus 로고    scopus 로고
    • Biophysical model for integrating neuronal activity, eeg, fmri and metabolism
    • Sotero, R. C. and Trujillo-Barreto, N. J. (2008). Biophysical model for integrating neuronal activity, eeg, fmri and metabolism. Neuroimage, 39(1):290-309.
    • (2008) Neuroimage , vol.39 , Issue.1 , pp. 290-309
    • Sotero, R.C.1    Trujillo-Barreto, N.J.2
  • 117
    • 77954384802 scopus 로고    scopus 로고
    • Bifurcation analysis of neural mass models: Impact of extrinsic inputs and dendritic time constants
    • Spiegler, A., Kiebel, S. J., Atay, F. M., and Knösche, T. R. (2010). Bifurcation analysis of neural mass models: Impact of extrinsic inputs and dendritic time constants. Neuroimage, 52(3):1041-1058.
    • (2010) Neuroimage , vol.52 , Issue.3 , pp. 1041-1058
    • Spiegler, A.1    Kiebel, S.J.2    Atay, F.M.3    Knösche, T.R.4
  • 118
    • 57149111292 scopus 로고    scopus 로고
    • A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory
    • Stefanescu, R. and Jirsa, V. (2008). A low dimensional description of globally coupled heterogeneous neural networks of excitatory and inhibitory. PLoS Comput. Biol., 4(11):26-36.
    • (2008) PLoS Comput. Biol , vol.4 , Issue.11 , pp. 26-36
    • Stefanescu, R.1    Jirsa, V.2
  • 119
    • 79952524603 scopus 로고    scopus 로고
    • Reduced representations of heterogeneous mixed neural networks with synaptic coupling
    • Stefanescu, R. and Jirsa, V. (2011). Reduced representations of heterogeneous mixed neural networks with synaptic coupling. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 83(2)
    • (2011) Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys , vol.83 , Issue.2
    • Stefanescu, R.1    Jirsa, V.2
  • 123
    • 0015260274 scopus 로고
    • Excitatory and inhibitory interactions in localized populations of model neurons
    • Wilson, H. and Cowan, J. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J., 12(1):1-24.
    • (1972) Biophys. J , vol.12 , Issue.1 , pp. 1-24
    • Wilson, H.1    Cowan, J.2
  • 124
    • 0015868589 scopus 로고
    • A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue
    • Wilson, H. and Cowan, J. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2):55-80.
    • (1973) Kybernetik , vol.13 , Issue.2 , pp. 55-80
    • Wilson, H.1    Cowan, J.2
  • 125
    • 32544439341 scopus 로고    scopus 로고
    • A recurrent network mechanism of time integration in perceptual decisions
    • Wong, K.-F. and Wang, X.-J. (2006). A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci., 26(4):1314-1328.
    • (2006) J. Neurosci , vol.26 , Issue.4 , pp. 1314-1328
    • Wong, K.-F.1    Wang, X.-J.2
  • 126
    • 0029202634 scopus 로고
    • Simulation of electrocortical waves
    • Wright, J. J. and Liley, D. T. J. (1995). Simulation of electrocortical waves. Biol. Cybern., 72(4):347-356.
    • (1995) Biol. Cybern , vol.72 , Issue.4 , pp. 347-356
    • Wright, J.J.1    Liley, D.T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.