메뉴 건너뛰기




Volumn 488, Issue , 2013, Pages 17-32

Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning

Author keywords

ANFIS; DENFIS; Global learning; Local learning; Neuro fuzzy systems; Rainfall runoff modeling

Indexed keywords

E-LEARNING; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; LEARNING ALGORITHMS; RAIN; REAL TIME CONTROL; RUNOFF; WATER MANAGEMENT;

EID: 84886101097     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2013.02.022     Document Type: Article
Times cited : (56)

References (39)
  • 2
    • 0019115365 scopus 로고
    • Parametric-deterministic urban watershed model
    • (HY5, Proc. Paper, 392)
    • Alley, W.M., Dawdy, D.R., Schaake Jr., J.C., 1980. Parametric-deterministic urban watershed model. J. Hydraul. Div. ASCE 106, 679-690 (HY5, Proc. Paper, 15,392)
    • (1980) J. Hydraul. Div. ASCE , vol.106 , pp. 679-690
    • Alley, W.M.1    Dawdy, D.R.2    Schaake Jr., J.C.3
  • 3
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff
    • Aqil, M., Kita, I., Yano, A., Nishiyama, S., 2007. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. J. Hydrol. 337 (1-2), 22-34
    • (2007) J. Hydrol. , vol.337 , Issue.1-2 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 4
    • 0003235818 scopus 로고
    • Development and Application of a Conceptual Runoff Model for Scandinavian Catchments
    • Norrköping
    • Bergstrom, S., 1976. Development and Application of a Conceptual Runoff Model for Scandinavian Catchments. SMHI Reports RHO, No. 7, Norrköping
    • (1976) SMHI Reports RHO , vol.7
    • Bergstrom, S.1
  • 5
    • 0015573239 scopus 로고
    • Development of a conceptual deterministic rainfall-runoff model
    • Bergstrom, S., Forsman, A., 1973. Development of a conceptual deterministic rainfall-runoff model. Nord. Hydrol. 4 (3), 1973
    • (1973) Nord. Hydrol. , vol.4 , Issue.3 , pp. 1973
    • Bergstrom, S.1    Forsman, A.2
  • 6
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang, F.J., Chang, Y.T., 2006. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Resour. 29 (1), 1-10
    • (2006) Adv. Water Resour. , vol.29 , Issue.1 , pp. 1-10
    • Chang, F.J.1    Chang, Y.T.2
  • 7
    • 78751651504 scopus 로고    scopus 로고
    • Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks Hydrol
    • Chiang, Y.M., Chang, L.C., Tsai, M.J., Wang, Y.F., Chang, F.J., 2011. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks Hydrol. Earth Syst. Sci. 15 (1), 185-196
    • (2011) Earth Syst. Sci. , vol.15 , Issue.1 , pp. 185-196
    • Chiang, Y.M.1    Chang, L.C.2    Tsai, M.J.3    Wang, Y.F.4    Chang, F.J.5
  • 8
    • 47049118310 scopus 로고    scopus 로고
    • Comparison between kinematic wave and artificial neural network models in event-based runoff simulation for an overland plane
    • Chua, L.H.C., Wong, T.S.W., Sriramula, L.K., 2008. Comparison between kinematic wave and artificial neural network models in event-based runoff simulation for an overland plane. J. Hydrol. 357 (3-4), 337-348
    • (2008) J. Hydrol. , vol.357 , Issue.3-4 , pp. 337-348
    • Chua, L.H.C.1    Wong, T.S.W.2    Sriramula, L.K.3
  • 9
    • 70449562922 scopus 로고    scopus 로고
    • Review of input determination techniques for neural network models based on mutual information and genetic algorithms
    • da CostaCouto, M.P., 2009. Review of input determination techniques for neural network models based on mutual information and genetic algorithms. Neural Comput. Appl. 18 (8), 891-901
    • (2009) Neural Comput. Appl. , vol.18 , Issue.8 , pp. 891-901
    • da CostaCouto, M.P.1
  • 10
    • 33645996016 scopus 로고    scopus 로고
    • Symbiotic adaptive neuro-evolution applied to rainfall-runoff modelling in northern England
    • Dawson, C.W., See, L.M., Abrahart, R.J., Heppenstall, A.J., 2006. Symbiotic adaptive neuro-evolution applied to rainfall-runoff modelling in northern England Neural Networks 19 (2), 236-247
    • (2006) Neural Networks , vol.19 , Issue.2 , pp. 236-247
    • Dawson, C.W.1    See, L.M.2    Abrahart, R.J.3    Heppenstall, A.J.4
  • 11
    • 3242757650 scopus 로고    scopus 로고
    • Selection of variables for the purpose of regionalization of Iran's precipitation climate using multivariate methods
    • Dinpashoh, Y., Fakheri-Fard, A., Moghaddam, M., Jahanbakhsh, S., Mirnia, M., 2004 Selection of variables for the purpose of regionalization of Iran's precipitation climate using multivariate methods. J. Hydrol. 297 (1-4), 109-123
    • (2004) J. Hydrol. , vol.297 , Issue.1-4 , pp. 109-123
    • Dinpashoh, Y.1    Fakheri-Fard, A.2    Moghaddam, M.3    Jahanbakhsh, S.4    Mirnia, M.5
  • 12
    • 77958183722 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1 concepts and methodology
    • Elshorbagy, A., Corzo, G., Srinivasulu, S., Solomatine, D.P., 2010a. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: concepts and methodology. Hydrol. Earth Syst. Sci. 14 (10), 1931-1941
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , Issue.10 , pp. 1931-1941
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 13
    • 77958199170 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2 application
    • Elshorbagy, A., Corzo, G., Srinivasulu, S., Solomatine, D.P., 2010b. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: application. Hydrol. Earth Syst. Sci. 14 (10), 1943-1961
    • (2010) Hydrol. Earth Syst. Sci , vol.14 , Issue.10 , pp. 1943-1961
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 14
    • 77957988612 scopus 로고
    • Adaptive Filtering Prediction and Control
    • Goodwin, G.C., Sin, K.S., 1984. Adaptive Filtering Prediction and Control. Prentice-Hall, p. 540
    • (1984) Prentice-Hall , pp. 540
    • Goodwin, G.C.1    Sin, K.S.2
  • 15
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrologyII: hydrologic applications
    • Govindaraju, R.S., 2000. Artificial neural networks in hydrology. II: hydrologic applications. J. Hydrol. Eng. 5 (2), 124-137
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
    • Govindaraju, R.S.1
  • 16
    • 82755161222 scopus 로고    scopus 로고
    • Evaluation of efficiency of different estimation methods for missing climatological data Stoch. Environ
    • Hasanpour Kashani, M., Dinpashoh, Y., 2012. Evaluation of efficiency of different estimation methods for missing climatological data. Stoch. Environ. Res. Risk Assess. 26 (1), 59-71
    • (2012) Res. Risk Assess. , vol.26 , Issue.1 , pp. 59-71
    • Hasanpour Kashani, M.1    Dinpashoh, Y.2
  • 17
    • 79952488657 scopus 로고    scopus 로고
    • Prediction of event-based stormwater runoff quantity and quality by ANNs developed using PMI-based input selection
    • He, J., Valeo, C., Chu, A., Neumann, N.F., 2011. Prediction of event-based stormwater runoff quantity and quality by ANNs developed using PMI-based input selection. J. Hydrol. 400 (1-2), 10-23
    • (2011) J. Hydrol. , vol.400 , Issue.1-2 , pp. 10-23
    • He, J.1    Valeo, C.2    Chu, A.3    Neumann, N.F.4
  • 18
    • 57349188393 scopus 로고    scopus 로고
    • Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm
    • Hong, Y.S.T., White, P.A., 2009. Hydrological modeling using a dynamic neuro-fuzzy system with on-line and local learning algorithm. Adv. Water Resour. 32 (1), 110-119
    • (2009) Adv. Water Resour. , vol.32 , Issue.1 , pp. 110-119
    • Hong, Y.S.T.1    White, P.A.2
  • 20
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Kasabov, N.K., Song, Q., 2002. DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans. Fuzzy Syst. 10 (2), 144-154
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 21
    • 33748913014 scopus 로고    scopus 로고
    • Comparison of different efficiency criteria for hydrological model assessment
    • Krause, P., Boyle, D.P., Bäse, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 5, 89-97
    • (2005) Adv. Geosci. , vol.5 , pp. 89-97
    • Krause, P.1    Boyle, D.P.2    Bäse, F.3
  • 22
    • 0000090588 scopus 로고    scopus 로고
    • On kinematic waves II: a theory of traffic flow on long crowded roads
    • Lighthill, M.J., Whitham, G.B., 1955. On kinematic waves II: a theory of traffic flow on long crowded roads. Proc. Roy. Soc. 229 (1178), 317-345.
    • Proc. Roy. Soc. , vol.229 , Issue.1178 , pp. 317-345
    • Lighthill, M.J.1    Whitham, G.B.2
  • 23
    • 0016368711 scopus 로고
    • Application of fuzzy algorithms for control of simple dynamic plant
    • Mamdani, E.H., 1974. Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng. 121 (12), 1585-1588
    • (1974) Proc. Inst. Electr. Eng. , vol.121 , Issue.12 , pp. 1585-1588
    • Mamdani, E.H.1
  • 24
    • 66249107437 scopus 로고    scopus 로고
    • Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models
    • Mukerji, A., Chatterjee, C., Singh Raghuwanshi, N., 2009. Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models. J. Hydrol. Eng. 14 (6), 647-652
    • (2009) J. Hydrol. Eng. , vol.14 , Issue.6 , pp. 647-652
    • Mukerji, A.1    Chatterjee, C.2    Singh Raghuwanshi, N.3
  • 25
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I - a discussion of principles
    • Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I - a discussion of principles. J. Hydrol. 10 (3), 282-290
    • (1970) J. Hydrol. , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 26
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak, P.C., Sudheer, K.P., Rangan, D.M., Ramasastri, K.S., 2004. A neuro-fuzzy computing technique for modeling hydrological time series. J. Hydrol. 291 (1- 2), 52-66
    • (2004) J. Hydrol. , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 28
    • 31744432525 scopus 로고    scopus 로고
    • FITSK: online local learning with generic fuzzy input Takagi-Sugeno-Kang fuzzy framework for nonlinear system estimation
    • Quah, K.H., Quek, C., 2006. FITSK: online local learning with generic fuzzy input Takagi-Sugeno-Kang fuzzy framework for nonlinear system estimation. IEEE Trans. Syst. Man Cybern. B Cybern. 36 (1), 166-178
    • (2006) IEEE Trans. Syst. Man Cybern. B Cybern. , vol.36 , Issue.1 , pp. 166-178
    • Quah, K.H.1    Quek, C.2
  • 29
    • 0036899543 scopus 로고    scopus 로고
    • Artificial neural networks for daily rainfall-runoff modelling
    • Rajurkar, M.P., Kothyari, U.C., Chaube, U.C., 2002. Artificial neural networks for daily rainfall-runoff modelling. Hydrol. Sci. J. 47 (6), 865-878
    • (2002) Hydrol. Sci. J. , vol.47 , Issue.6 , pp. 865-878
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 30
    • 65749094852 scopus 로고    scopus 로고
    • Runoff prediction using an integrated hybrid modelling scheme
    • Remesan, R., Shamim, M.A., Han, D., Mathew, J., 2009. Runoff prediction using an integrated hybrid modelling scheme. J. Hydrol. 372 (1-4), 48-60
    • (2009) J. Hydrol. , vol.372 , Issue.1-4 , pp. 48-60
    • Remesan, R.1    Shamim, M.A.2    Han, D.3    Mathew, J.4
  • 31
    • 84868209993 scopus 로고    scopus 로고
    • Estimation of daily pan evaporation using two different adaptive neuro-fuzzy computing techniques Water Resour
    • Sanikhani, H., Kisi, O., Nikpour, M.R., Dinpashoh, Y., 2012. Estimation of daily pan evaporation using two different adaptive neuro-fuzzy computing techniques Water Resour. Manage. 26 (15), 4347-4365
    • (2012) Manage , vol.26 , Issue.15 , pp. 4347-4365
    • Sanikhani, H.1    Kisi, O.2    Nikpour, M.R.3    Dinpashoh, Y.4
  • 32
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi, T., Sugeno, M., 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15 (1), 116-132
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 33
    • 84860356830 scopus 로고    scopus 로고
    • Influence of lag time on event-based rainfall-runoff modeling using the data driven approach
    • Talei, A., Chua, L.H.C., 2012. Influence of lag time on event-based rainfall-runoff modeling using the data driven approach. J. Hydrol. 438-439, 223-233
    • (2012) J. Hydrol. , vol.438 , Issue.439 , pp. 223-233
    • Talei, A.1    Chua, L.H.C.2
  • 34
    • 77955716349 scopus 로고    scopus 로고
    • A novel application of a neuro-fuzzy computational technique in event-based rainfall-runoff modeling
    • Talei, A., Chua, L.H.C., Quek, C., 2010a. A novel application of a neuro-fuzzy computational technique in event-based rainfall-runoff modeling. Expert Syst Appl. 37 (12), 7456-7468
    • (2010) Expert Syst Appl , vol.37 , Issue.12 , pp. 7456-7468
    • Talei, A.1    Chua, L.H.C.2    Quek, C.3
  • 35
    • 77956263390 scopus 로고    scopus 로고
    • Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling
    • Talei, A., Chua, L.H.C., Wong, T.S.W., 2010b. Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modeling. J. Hydrol. 391 (3-4), 248-262
    • (2010) J. Hydrol. , vol.391 , Issue.3-4 , pp. 248-262
    • Talei, A.1    Chua, L.H.C.2    Wong, T.S.W.3
  • 36
    • 45749132987 scopus 로고    scopus 로고
    • Performances of rainfall-runoff models calibrated over single and continuous storm flow events J
    • Tan, S.B.K., Chua, L.H.C., Shuy, E.B., Lo, E.Y.M., Lim, L.M., 2008. Performances of rainfall-runoff models calibrated over single and continuous storm flow events J. Hydrol. Eng. 13 (7), 597-607
    • (2008) Hydrol. Eng. , vol.13 , Issue.7 , pp. 597-607
    • Tan, S.B.K.1    Chua, L.H.C.2    Shuy, E.B.3    Lo, E.Y.M.4    Lim, L.M.5
  • 37
    • 0026711368 scopus 로고
    • Improving the convergence of the backpropagation algorithm
    • Van Ooyen, A., Nienhuis, B., 1992. Improving the convergence of the backpropagation algorithm. Neural Networks 5 (3), 465-471
    • (1992) Neural Networks , vol.5 , Issue.3 , pp. 465-471
    • Van Ooyen, A.1    Nienhuis, B.2
  • 38
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang, W.C., Chau, K.W., Cheng, C.T., Qiu, L., 2009. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol. 374 (3-4), 294-306
    • (2009) J. Hydrol. , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 39
    • 54249137704 scopus 로고    scopus 로고
    • Optimum rainfall interval and manning's roughness coefficient for runoff simulation
    • Wong, T.S.W., 2008. Optimum rainfall interval and manning's roughness coefficient for runoff simulation. J. Hydrol. Eng. 13 (11), 1097-1102
    • (2008) J. Hydrol. Eng. , vol.13 , Issue.11 , pp. 1097-1102
    • Wong, T.S.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.