메뉴 건너뛰기




Volumn 20, Issue 10, 2013, Pages 1173-1183

The Microprocessor controls the activity of mammalian retrotransposons

Author keywords

[No Author keywords available]

Indexed keywords

CELL PROTEIN; DGCR8 PROTEIN; MESSENGER RNA; MICRORNA; UNCLASSIFIED DRUG;

EID: 84885435444     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/nsmb.2658     Document Type: Article
Times cited : (92)

References (71)
  • 3
    • 0041353551 scopus 로고    scopus 로고
    • LINE-mediated retrotransposition of marked Alu sequences
    • DOI 10.1038/ng1223
    • Dewannieux, M., Esnault, C. & Heidmann, T. LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35, 41-48 (2003). (Pubitemid 37048594)
    • (2003) Nature Genetics , vol.35 , Issue.1 , pp. 41-48
    • Dewannieux, M.1    Esnault, C.2    Heidmann, T.3
  • 5
    • 84857888415 scopus 로고    scopus 로고
    • The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery
    • Raiz, J. et al. The non-autonomous retrotransposon SVA is trans-mobilized by the human LINE-1 protein machinery. Nucleic Acids Res. 40, 1666-1683 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. 1666-1683
    • Raiz, J.1
  • 6
    • 0034079713 scopus 로고    scopus 로고
    • Human LINE retrotransposons generate processed pseudogenes
    • DOI 10.1038/74184
    • Esnault, C., Maestre, J. & Heidmann, T. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24, 363-367 (2000). (Pubitemid 30187433)
    • (2000) Nature Genetics , vol.24 , Issue.4 , pp. 363-367
    • Esnault, C.1    Maestre, J.2    Heidmann, T.3
  • 8
    • 34248141710 scopus 로고    scopus 로고
    • Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase
    • DOI 10.1101/gr.5870107
    • Garcia-Perez, J.L., Doucet, A.J., Bucheton, A., Moran, J.V. & Gilbert, N. Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase. Genome Res. 17, 602-611 (2007). (Pubitemid 46715510)
    • (2007) Genome Research , vol.17 , Issue.5 , pp. 602-611
    • Garcia-Perez, J.L.1    Doucet, A.J.2    Bucheton, A.3    Moran, J.V.4    Gilbert, N.5
  • 9
    • 77953889472 scopus 로고    scopus 로고
    • Natural mutagenesis of human genomes by endogenous retrotransposons
    • Iskow, R.C. et al. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141, 1253-1261 (2010).
    • (2010) Cell , vol.141 , pp. 1253-1261
    • Iskow, R.C.1
  • 10
    • 79251493015 scopus 로고    scopus 로고
    • A human genome structural variation sequencing resource reveals insights into mutational mechanisms
    • Kidd, J.M. et al. A human genome structural variation sequencing resource reveals insights into mutational mechanisms. Cell 143, 837-847 (2010).
    • (2010) Cell , vol.143 , pp. 837-847
    • Kidd, J.M.1
  • 11
    • 81855178276 scopus 로고    scopus 로고
    • Somatic retrotransposition alters the genetic landscape of the human brain
    • Baillie, J.K. et al. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479, 534-537 (2011).
    • (2011) Nature , vol.479 , pp. 534-537
    • Baillie, J.K.1
  • 12
    • 3543151399 scopus 로고    scopus 로고
    • The insertional history of an active family of L1 retrotransposons in humans
    • DOI 10.1101/gr.2326704
    • Boissinot, S., Entezam, A., Young, L., Munson, P.J. & Furano, A.V. The insertional history of an active family of L1 retrotransposons in humans. Genome Res. 14, 1221-1231 (2004). (Pubitemid 39029219)
    • (2004) Genome Research , vol.14 , Issue.7 , pp. 1221-1231
    • Boissinot, S.1    Entezam, A.2    Young, L.3    Munson, P.J.4    Furano, A.V.5
  • 13
    • 0025740894 scopus 로고
    • Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells
    • Martin, S.L. Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol. Cell. Biol. 11, 4804-4807 (1991). (Pubitemid 21895879)
    • (1991) Molecular and Cellular Biology , vol.11 , Issue.9 , pp. 4804-4807
    • Martin, S.L.1
  • 15
    • 0036250811 scopus 로고    scopus 로고
    • Alu repeats and human genomic diversity
    • DOI 10.1038/nrg798
    • Batzer, M.A. & Deininger, P.L. Alu repeats and human genomic diversity. Nat. Rev. Genet. 3, 370-379 (2002). (Pubitemid 34506718)
    • (2002) Nature Reviews Genetics , vol.3 , Issue.5 , pp. 370-379
    • Batzer, M.A.1    Deininger, P.L.2
  • 16
    • 57149120574 scopus 로고    scopus 로고
    • Active Alu retrotransposons in the human genome
    • Bennett, E.A. et al. Active Alu retrotransposons in the human genome. Genome Res. 18, 1875-1883 (2008).
    • (2008) Genome Res. , vol.18 , pp. 1875-1883
    • Bennett, E.A.1
  • 17
    • 33748363713 scopus 로고    scopus 로고
    • L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells
    • DOI 10.1038/nsmb1141, PII NSMB1141
    • Yang, N. & Kazazian, H.H. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat. Struct. Mol. Biol. 13, 763-771 (2006). (Pubitemid 44338769)
    • (2006) Nature Structural and Molecular Biology , vol.13 , Issue.9 , pp. 763-771
    • Yang, N.1    Kazazian Jr., H.H.2
  • 20
    • 9144224451 scopus 로고    scopus 로고
    • Processing of primary microRNAs by the Microprocessor complex
    • DOI 10.1038/nature03049
    • Denli, A.M., Tops, B.B.J., Plasterk, R.H.A., Ketting, R.F. & Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231-235 (2004). (Pubitemid 39545854)
    • (2004) Nature , vol.432 , Issue.7014 , pp. 231-235
    • Denli, A.M.1    Tops, B.B.J.2    Plasterk, R.H.A.3    Ketting, R.F.4    Hannon, G.J.5
  • 24
    • 84864688599 scopus 로고    scopus 로고
    • DGCR8 HITS-CLIP reveals novel functions for the Microprocessor
    • Macias, S. et al. DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nat. Struct. Mol. Biol. 19, 760-766 (2012).
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 760-766
    • MacIas, S.1
  • 25
    • 67349173665 scopus 로고    scopus 로고
    • The regulated retrotransposon transcriptome of mammalian cells
    • Faulkner, G.J. et al. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41, 563-571 (2009).
    • (2009) Nat. Genet. , vol.41 , pp. 563-571
    • Faulkner, G.J.1
  • 26
    • 78751550533 scopus 로고    scopus 로고
    • Epigenetic control of retrotransposon expression in human embryonic stem cells
    • Macia, A. et al. Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol. Cell. Biol. 31, 300-316 (2011).
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 300-316
    • MacIa, A.1
  • 27
    • 84855199454 scopus 로고    scopus 로고
    • Alu elements: Know the SINEs
    • Deininger, P. Alu elements: know the SINEs. Genome Biol. 12, 236 (2011).
    • (2011) Genome Biol. , vol.12 , pp. 236
    • Deininger, P.1
  • 28
    • 0034999474 scopus 로고    scopus 로고
    • Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes
    • DOI 10.1128/MCB.21.6.1973-1985.2001
    • Speek, M. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21, 1973-1985 (2001). (Pubitemid 32479621)
    • (2001) Molecular and Cellular Biology , vol.21 , Issue.6 , pp. 1973-1985
    • Speek, M.1
  • 29
    • 24644519490 scopus 로고    scopus 로고
    • The transcriptional landscape of the mammalian genome
    • Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science 309, 1559-1563 (2005).
    • (2005) Science , vol.309 , pp. 1559-1563
    • Carninci, P.1
  • 30
    • 77955495399 scopus 로고    scopus 로고
    • Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells
    • Garcia-Perez, J.L. et al. Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466, 769-773 (2010).
    • (2010) Nature , vol.466 , pp. 769-773
    • Garcia-Perez, J.L.1
  • 31
    • 33749984008 scopus 로고    scopus 로고
    • Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing
    • DOI 10.1093/nar/gkl458
    • Yeom, K.-H., Lee, Y., Han, J., Suh, M.R. & Kim, V.N. Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res. 34, 4622-4629 (2006). (Pubitemid 44567057)
    • (2006) Nucleic Acids Research , vol.34 , Issue.16 , pp. 4622-4629
    • Yeom, K.-H.1    Lee, Y.2    Han, J.3    Suh, M.R.4    Kim, V.N.5
  • 32
    • 0344826526 scopus 로고    scopus 로고
    • RNA truncation by premature polyadenylation attenuates human mobile element activity
    • DOI 10.1038/ng1269
    • Perepelitsa-Belancio, V. & Deininger, P. RNA truncation by premature polyadenylation attenuates human mobile element activity. Nat. Genet. 35, 363-366 (2003). (Pubitemid 37486920)
    • (2003) Nature Genetics , vol.35 , Issue.4 , pp. 363-366
    • Perepelitsa-Belancio, V.1    Deininger, P.2
  • 33
    • 33645466204 scopus 로고    scopus 로고
    • LINE-1 RNA splicing and infuences on mammalian gene expression
    • Belancio, V.P., Hedges, D.J. & Deininger, P. LINE-1 RNA splicing and infuences on mammalian gene expression. Nucleic Acids Res. 34, 1512-1521 (2006).
    • (2006) Nucleic Acids Res. , vol.34 , pp. 1512-1521
    • Belancio, V.P.1    Hedges, D.J.2    Deininger, P.3
  • 34
    • 83455169070 scopus 로고    scopus 로고
    • Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility
    • Wissing, S. et al. Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility. Hum. Mol. Genet. 21, 208-218 (2012).
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 208-218
    • Wissing, S.1
  • 35
    • 58149097010 scopus 로고    scopus 로고
    • Posttranscriptional crossregulation between Drosha and DGCR8
    • Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75-84 (2009).
    • (2009) Cell , vol.136 , pp. 75-84
    • Han, J.1
  • 36
    • 4544223707 scopus 로고    scopus 로고
    • Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L
    • DOI 10.1038/nature02886
    • Bourc'his, D. & Bestor, T.H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96-99 (2004). (Pubitemid 39215115)
    • (2004) Nature , vol.430 , Issue.7004 , pp. 96-99
    • Bourc'His, D.1    Bestor, T.H.2
  • 37
    • 69349096044 scopus 로고    scopus 로고
    • L1 retrotransposition in human neural progenitor cells
    • Coufal, N.G. et al. L1 retrotransposition in human neural progenitor cells. Nature 460, 1127-1131 (2009).
    • (2009) Nature , vol.460 , pp. 1127-1131
    • Coufal, N.G.1
  • 38
    • 33847323881 scopus 로고    scopus 로고
    • DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal
    • DOI 10.1038/ng1969, PII NG1969
    • Wang, Y., Medvid, R., Melton, C., Jaenisch, R. & Blelloch, R. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 39, 380-385 (2007). (Pubitemid 46328490)
    • (2007) Nature Genetics , vol.39 , Issue.3 , pp. 380-385
    • Wang, Y.1    Medvid, R.2    Melton, C.3    Jaenisch, R.4    Blelloch, R.5
  • 40
    • 0031735504 scopus 로고    scopus 로고
    • Rapid amplification of a retrotransposon subfamily is evolving the mouse genome
    • DOI 10.1038/3104
    • DeBerardinis, R.J., Goodier, J.L., Ostertag, E.M. & Kazazian, H.H. Rapid amplifcation of a retrotransposon subfamily is evolving the mouse genome. Nat. Genet. 20, 288-290 (1998). (Pubitemid 28507676)
    • (1998) Nature Genetics , vol.20 , Issue.3 , pp. 288-290
    • DeBerardinis, R.J.1    Goodier, J.L.2    Ostertag, E.M.3    Kazazian Jr., H.H.4
  • 41
    • 0034760666 scopus 로고    scopus 로고
    • A novel active L1 retrotransposon subfamily in the mouse
    • DOI 10.1101/gr.198301
    • Goodier, J.L., Ostertag, E.M., Du, K. & Kazazian, H.H. A novel active L1 retrotransposon subfamily in the mouse. Genome Res. 11, 1677-1685 (2001). (Pubitemid 33040494)
    • (2001) Genome Research , vol.11 , Issue.10 , pp. 1677-1685
    • Goodier, J.L.1    Ostertag, E.M.2    Du, K.3    Kazazian Jr., H.H.4
  • 43
    • 0036613245 scopus 로고    scopus 로고
    • DNA repair mediated by endonuclease-independent LINE-1 retrotransposition
    • Morrish, T.A. et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat. Genet. 31, 159-165 (2002).
    • (2002) Nat. Genet. , vol.31 , pp. 159-165
    • Morrish, T.A.1
  • 45
    • 79955900091 scopus 로고    scopus 로고
    • Evolutionary conservation of the functional modularity of primate and murine LINE-1 elements
    • Wagstaff, B.J., Barnerssoi, M. & Roy-Engel, A.M. Evolutionary conservation of the functional modularity of primate and murine LINE-1 elements. PLoS ONE 6, e19672 (2011).
    • (2011) PLoS ONE , vol.6
    • Wagstaff, B.J.1    Barnerssoi, M.2    Roy-Engel, A.M.3
  • 46
    • 2442671716 scopus 로고    scopus 로고
    • A highly active synthetic mammalian retrotransposon
    • DOI 10.1038/nature02535
    • Han, J.S. & Boeke, J.D. A highly active synthetic mammalian retrotransposon. Nature 429, 314-318 (2004). (Pubitemid 38684818)
    • (2004) Nature , vol.429 , Issue.6989 , pp. 314-318
    • Han, J.S.1    Boeke, J.D.2
  • 48
    • 34447115822 scopus 로고    scopus 로고
    • The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a
    • DOI 10.1038/nsmb1250, PII NSMB1250
    • Guil, S. & Cáceres, J.F. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat. Struct. Mol. Biol. 14, 591-596 (2007). (Pubitemid 47037061)
    • (2007) Nature Structural and Molecular Biology , vol.14 , Issue.7 , pp. 591-596
    • Guil, S.1    Caceres, J.F.2
  • 49
    • 54349104464 scopus 로고    scopus 로고
    • Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs
    • Babiarz, J.E., Ruby, J.G., Wang, Y., Bartel, D.P. & Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor- independent, Dicer-dependent small RNAs. Genes Dev. 22, 2773-2785 (2008).
    • (2008) Genes Dev. , vol.22 , pp. 2773-2785
    • Babiarz, J.E.1    Ruby, J.G.2    Wang, Y.3    Bartel, D.P.4    Blelloch, R.5
  • 50
    • 3042767202 scopus 로고    scopus 로고
    • MicroRNAs: Small RNAs with a big role in gene regulation
    • DOI 10.1038/nrg1379
    • He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522-531 (2004). (Pubitemid 38868508)
    • (2004) Nature Reviews Genetics , vol.5 , Issue.7 , pp. 522-531
    • He, L.1    Hannon, G.J.2
  • 52
    • 66149168927 scopus 로고    scopus 로고
    • L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism
    • Kano, H. et al. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev. 23, 1303-1312 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 1303-1312
    • Kano, H.1
  • 53
    • 20544466648 scopus 로고    scopus 로고
    • Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition
    • DOI 10.1038/nature03663
    • Muotri, A.R. et al. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435, 903-910 (2005). (Pubitemid 40896309)
    • (2005) Nature , vol.435 , Issue.7044 , pp. 903-910
    • Muotri, A.R.1    Chu, V.T.2    Marchetto, M.C.N.3    Deng, W.4    Moran, J.V.5    Gage, F.H.6
  • 54
    • 84865285978 scopus 로고    scopus 로고
    • Landscape of somatic retrotransposition in human cancers
    • Lee, E. et al. Landscape of somatic retrotransposition in human cancers. Science 337, 967-971 (2012).
    • (2012) Science , vol.337 , pp. 967-971
    • Lee, E.1
  • 55
    • 84868032982 scopus 로고    scopus 로고
    • Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain
    • Evrony, G.D. et al. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151, 483-496 (2012).
    • (2012) Cell , vol.151 , pp. 483-496
    • Evrony, G.D.1
  • 56
    • 84870482898 scopus 로고    scopus 로고
    • Extensive somatic L1 retrotransposition in colorectal tumors
    • Solyom, S. et al. Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res. 22, 2328-2338 (2012).
    • (2012) Genome Res. , vol.22 , pp. 2328-2338
    • Solyom, S.1
  • 57
    • 84883589001 scopus 로고    scopus 로고
    • Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition
    • doi:10.1093/nar/gkt512
    • Goodier, J.L., Cheung, L.E. & Kazazian, H.H. Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition. Nucleic Acids Res. doi:10.1093/nar/gkt512 (2013).
    • (2013) Nucleic Acids Res
    • Goodier, J.L.1    Cheung, L.E.2    Kazazian, H.H.3
  • 58
    • 49549100511 scopus 로고    scopus 로고
    • Trex1 prevents cell-intrinsic initiation of autoimmunity
    • Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587-598 (2008).
    • (2008) Cell , vol.134 , pp. 587-598
    • Stetson, D.B.1    Ko, J.S.2    Heidmann, T.3    Medzhitov, R.4
  • 59
    • 84862568417 scopus 로고    scopus 로고
    • Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses
    • Arjan-Odedra, S., Swanson, C.M., Sherer, N.M., Wolinsky, S.M. & Malim, M.H. Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses. Retrovirology 9, 53 (2012).
    • (2012) Retrovirology , vol.9 , pp. 53
    • Arjan-Odedra, S.1    Swanson, C.M.2    Sherer, N.M.3    Wolinsky, S.M.4    Malim, M.H.5
  • 60
    • 84868099592 scopus 로고    scopus 로고
    • MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells
    • Goodier, J.L., Cheung, L.E. & Kazazian, H.H. MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells. PLoS Genet. 8, e1002941 (2012).
    • (2012) PLoS Genet. , vol.8
    • Goodier, J.L.1    Cheung, L.E.2    Kazazian, H.H.3
  • 61
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-effcient alignment of short DNA sequences to the human genome
    • Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-effcient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
    • (2009) Genome Biol. , vol.10
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.L.4
  • 62
    • 78651320424 scopus 로고    scopus 로고
    • The UCSC Genome Browser database: Update 2011
    • Fujita, P.A. et al. The UCSC Genome Browser database: update 2011. Nucleic Acids Res. 39, D876-D882 (2011).
    • (2011) Nucleic Acids Res. , vol.39
    • Fujita, P.A.1
  • 64
    • 39049191299 scopus 로고    scopus 로고
    • Fjoin: Simple and effcient computation of feature overlaps
    • Richardson, J.E. fjoin: simple and effcient computation of feature overlaps. J. Comput. Biol. 13, 1457-1464 (2006).
    • (2006) J. Comput. Biol. , vol.13 , pp. 1457-1464
    • Richardson, J.E.1
  • 65
    • 24044447664 scopus 로고    scopus 로고
    • Automated generation of heuristics for biological sequence comparison
    • Slater, G.S.C. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6, 31 (2005).
    • (2005) BMC Bioinformatics , vol.6 , pp. 31
    • Slater, G.S.C.1    Birney, E.2
  • 66
    • 76349122201 scopus 로고    scopus 로고
    • Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans
    • Zisoulis, D.G. et al. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat. Struct. Mol. Biol. 17, 173-179 (2010).
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 173-179
    • Zisoulis, D.G.1
  • 67
    • 77955492563 scopus 로고    scopus 로고
    • Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs Drosha and additional nucleases
    • Karginov, F.V. et al. Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol. Cell 38, 781-788 (2010).
    • (2010) Mol. Cell , vol.38 , pp. 781-788
    • Karginov, F.V.1
  • 68
    • 34548799740 scopus 로고    scopus 로고
    • LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex
    • DOI 10.1128/MCB.00332-07
    • Goodier, J.L., Zhang, L., Vetter, M.R. & Kazazian, H.H. LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol. Cell. Biol. 27, 6469-6483 (2007). (Pubitemid 47435752)
    • (2007) Molecular and Cellular Biology , vol.27 , Issue.18 , pp. 6469-6483
    • Goodier, J.L.1    Zhang, L.2    Vetter, M.R.3    Kazazian Jr., H.H.4
  • 69
    • 0034633295 scopus 로고    scopus 로고
    • A transient assay reveals that cultured human cells can accommodate multiple LINE-1 retrotransposition events
    • Wei, W., Morrish, T.A., Alisch, R.S. & Moran, J.V. A transient assay reveals that cultured human cells can accommodate multiple LINE-1 retrotransposition events. Anal. Biochem. 284, 435-438 (2000).
    • (2000) Anal. Biochem. , vol.284 , pp. 435-438
    • Wei, W.1    Morrish, T.A.2    Alisch, R.S.3    Moran, J.V.4
  • 70
    • 77953880842 scopus 로고    scopus 로고
    • LINE-1 retrotransposition activity in human genomes
    • Beck, C.R. et al. LINE-1 retrotransposition activity in human genomes. Cell 141, 1159-1170 (2010).
    • (2010) Cell , vol.141 , pp. 1159-1170
    • Beck, C.R.1
  • 71
    • 0033591465 scopus 로고    scopus 로고
    • Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure
    • DOI 10.1006/jmbi.1999.2700
    • Mathews, D.H., Sabina, J., Zuker, M. & Turner, D.H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288, 911-940 (1999). (Pubitemid 29248642)
    • (1999) Journal of Molecular Biology , vol.288 , Issue.5 , pp. 911-940
    • Mathews, D.H.1    Sabina, J.2    Zuker, M.3    Turner, D.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.