메뉴 건너뛰기




Volumn 35, Issue 11, 2013, Pages 945-954

The insulin receptor changes conformation in unforeseen ways on ligand binding: Sharpening the picture of insulin receptor activation

Author keywords

Crystal structure; Insulin; Insulin receptor; Insulin like growth factor; Negative cooperativity; Signaling mechanism; Type 1 insulin like growth factor receptor

Indexed keywords

DISULFIDE; EPIDERMAL GROWTH FACTOR RECEPTOR; HOMODIMER; INSULIN RECEPTOR; PIG INSULIN;

EID: 84885378451     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201300065     Document Type: Article
Times cited : (66)

References (89)
  • 1
    • 0015809277 scopus 로고
    • Insulin interactions with its receptors: experimental evidence for negative cooperativity
    • De Meyts P, Roth J, Neville DM, Jr., Gavin JR, III, et al. 1973. Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem Biophys Res Commun 55: 154-61.
    • (1973) Biochem Biophys Res Commun , vol.55 , pp. 154-161
    • De Meyts, P.1    Roth, J.2    Neville Jr., D.M.3    Gavin, J.R.4
  • 2
    • 0028146822 scopus 로고
    • The structural basis of insulin and insulin-like growth factor-I receptor binding and negative co-operativity, and its relevance to mitogenic versus metabolic signalling
    • De Meyts P. 1994. The structural basis of insulin and insulin-like growth factor-I receptor binding and negative co-operativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia 37: S135-48.
    • (1994) Diabetologia , vol.37
    • De Meyts, P.1
  • 3
    • 60749092852 scopus 로고    scopus 로고
    • Harmonic oscillator model of the insulin and IGF1 receptors' allosteric binding and activation
    • Kiselyov VV, Versteyhe S, Gauguin L, De Meyts P. 2009. Harmonic oscillator model of the insulin and IGF1 receptors' allosteric binding and activation. Molec Sys Biol 5: 243.
    • (2009) Molec Sys Biol , vol.5 , pp. 243
    • Kiselyov, V.V.1    Versteyhe, S.2    Gauguin, L.3    De Meyts, P.4
  • 4
    • 82455186745 scopus 로고    scopus 로고
    • Insight into the molecular basis for the kinetic differences between the two insulin receptor isoforms
    • Knudsen L, De Meyts P, Kiselyov VV. 2011. Insight into the molecular basis for the kinetic differences between the two insulin receptor isoforms. Biochem J 440: 397-403.
    • (2011) Biochem J , vol.440 , pp. 397-403
    • Knudsen, L.1    De Meyts, P.2    Kiselyov, V.V.3
  • 5
    • 84872162672 scopus 로고    scopus 로고
    • How insulin engages its primary binding site on the insulin receptor
    • Menting JG, Whittaker J, Margetts MB, Whittaker LJ, et al. 2013. How insulin engages its primary binding site on the insulin receptor. Nature 493: 241-5.
    • (2013) Nature , vol.493 , pp. 241-245
    • Menting, J.G.1    Whittaker, J.2    Margetts, M.B.3    Whittaker, L.J.4
  • 6
    • 0000557482 scopus 로고
    • Structure of rhombohedral 2 zinc insulin crystals
    • Adams MJ, Blundell TL, Dodson EJ, Dodson GG, et al. 1969. Structure of rhombohedral 2 zinc insulin crystals. Nature 224: 491-5.
    • (1969) Nature , vol.224 , pp. 491-495
    • Adams, M.J.1    Blundell, T.L.2    Dodson, E.J.3    Dodson, G.G.4
  • 8
    • 10844223660 scopus 로고    scopus 로고
    • Insulin and its receptor: structure, function and evolution
    • De Meyts P. 2004. Insulin and its receptor: structure, function and evolution. BioEssays 26: 1351-62.
    • (2004) BioEssays , vol.26 , pp. 1351-1362
    • De Meyts, P.1
  • 9
    • 42349087938 scopus 로고    scopus 로고
    • Importance of the solvent-exposed residues of the insulin B chain α-helix for receptor binding
    • Glendorf T, Sørensen AR, Nishimura E, Pettersson I, et al. 2008. Importance of the solvent-exposed residues of the insulin B chain α-helix for receptor binding. Biochemistry 47: 4743-51.
    • (2008) Biochemistry , vol.47 , pp. 4743-4751
    • Glendorf, T.1    Sørensen, A.R.2    Nishimura, E.3    Pettersson, I.4
  • 10
    • 0028268592 scopus 로고
    • A model for insulin binding to the insulin receptor
    • Schäffer L. 1994. A model for insulin binding to the insulin receptor. Eur J Biochem 221: 1127-32.
    • (1994) Eur J Biochem , vol.221 , pp. 1127-1132
    • Schäffer, L.1
  • 11
    • 84885373407 scopus 로고    scopus 로고
    • Analysis of structure-activity relationships of the insulin molecule by alanine scanning mutagenesis, Master's Thesis, Copenhagen, Denmark: The University of Copenhagen.
    • Jensen A-M. 2000. Analysis of structure-activity relationships of the insulin molecule by alanine scanning mutagenesis, Master's Thesis, Copenhagen, Denmark: The University of Copenhagen.
    • (2000)
    • Jensen, A.-M.1
  • 12
    • 48149095541 scopus 로고    scopus 로고
    • Alanine scanning of a putative receptor binding surface of insulin-like growth factor-I
    • Gauguin L, Delaine C, Alvino CL, McNeil KA, et al. 2008. Alanine scanning of a putative receptor binding surface of insulin-like growth factor-I. J Biol Chem 283: 20821-9.
    • (2008) J Biol Chem , vol.283 , pp. 20821-20829
    • Gauguin, L.1    Delaine, C.2    Alvino, C.L.3    McNeil, K.A.4
  • 13
    • 65549110812 scopus 로고    scopus 로고
    • A novel approach to identify two distinct receptor binding surfaces of insulin-like growth factor II
    • Alvino CL, McNeil KA, Ong SC, Delaine C, et al. 2009. A novel approach to identify two distinct receptor binding surfaces of insulin-like growth factor II. J Biol Chem 284: 7656-64.
    • (2009) J Biol Chem , vol.284 , pp. 7656-7664
    • Alvino, C.L.1    McNeil, K.A.2    Ong, S.C.3    Delaine, C.4
  • 14
    • 0021985413 scopus 로고
    • Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes
    • Ullrich A, Bell JR, Chen EY, Herrera R, et al. 1985. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313: 756-61.
    • (1985) Nature , vol.313 , pp. 756-761
    • Ullrich, A.1    Bell, J.R.2    Chen, E.Y.3    Herrera, R.4
  • 15
    • 0021924895 scopus 로고
    • The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling
    • Ebina Y, Ellis L, Jarnagin K, Edery M, et al. 1985. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell 40: 747-58.
    • (1985) Cell , vol.40 , pp. 747-758
    • Ebina, Y.1    Ellis, L.2    Jarnagin, K.3    Edery, M.4
  • 16
    • 0023241481 scopus 로고
    • On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors
    • Bajaj M, Waterfield MD, Schlessinger J, Taylor WR, et al. 1987. On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors. Biochim Biophys Acta 916: 220-6.
    • (1987) Biochim Biophys Acta , vol.916 , pp. 220-226
    • Bajaj, M.1    Waterfield, M.D.2    Schlessinger, J.3    Taylor, W.R.4
  • 17
    • 0029060529 scopus 로고
    • Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumor necrosis factor receptor
    • Ward CW, Hoyne PA, Flegg RH. 1995. Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumor necrosis factor receptor. Proteins 22: 141-53.
    • (1995) Proteins , vol.22 , pp. 141-153
    • Ward, C.W.1    Hoyne, P.A.2    Flegg, R.H.3
  • 18
    • 0026010027 scopus 로고
    • axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase
    • O'Bryan JP, Frye RA, Cogswell PC, Neubauer A, et al. 1991. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol 11: 5016-31.
    • (1991) Mol Cell Biol , vol.11 , pp. 5016-5031
    • O'Bryan, J.P.1    Frye, R.A.2    Cogswell, P.C.3    Neubauer, A.4
  • 19
    • 0032410208 scopus 로고    scopus 로고
    • A third fibronectin-type-III domain in the insulin-family receptors
    • Mulhern TD, Booker GW, Cosgrove L. 1998. A third fibronectin-type-III domain in the insulin-family receptors. Trends Biochem Sci 23: 465-6.
    • (1998) Trends Biochem Sci , vol.23 , pp. 465-466
    • Mulhern, T.D.1    Booker, G.W.2    Cosgrove, L.3
  • 20
    • 0032418094 scopus 로고    scopus 로고
    • A third fibronectin type III domain in the extracellular region of the insulin receptor family
    • Marino-Buslje C, Mizuguchi K, Siddle K, Blundell TL. 1998. A third fibronectin type III domain in the extracellular region of the insulin receptor family. FEBS Lett 441: 331-6.
    • (1998) FEBS Lett , vol.441 , pp. 331-336
    • Marino-Buslje, C.1    Mizuguchi, K.2    Siddle, K.3    Blundell, T.L.4
  • 21
    • 0032767919 scopus 로고    scopus 로고
    • Members of the insulin receptor family contain three fibronectin type III domains
    • Ward CW. 1999. Members of the insulin receptor family contain three fibronectin type III domains. Growth Factors 16: 315-22.
    • (1999) Growth Factors , vol.16 , pp. 315-322
    • Ward, C.W.1
  • 22
    • 40549117199 scopus 로고    scopus 로고
    • N-linked glycans of the human insulin receptor and their distribution over the crystal structure
    • Sparrow LG, Lawrence MC, Gorman JJ, Strike PM, et al. 2008. N-linked glycans of the human insulin receptor and their distribution over the crystal structure. Proteins 71: 426-39.
    • (2008) Proteins , vol.71 , pp. 426-439
    • Sparrow, L.G.1    Lawrence, M.C.2    Gorman, J.J.3    Strike, P.M.4
  • 23
    • 33845998948 scopus 로고    scopus 로고
    • The location and characterisation of the O-linked glycans of the human insulin receptor
    • Sparrow LG, Gorman JJ, Strike PM, Robinson CP, et al. 2007. The location and characterisation of the O-linked glycans of the human insulin receptor. Proteins 66: 261-5.
    • (2007) Proteins , vol.66 , pp. 261-265
    • Sparrow, L.G.1    Gorman, J.J.2    Strike, P.M.3    Robinson, C.P.4
  • 24
    • 0035575586 scopus 로고    scopus 로고
    • SH2 domains, interaction modules and cellular wiring
    • Pawson T, Gish GD, Nash P. 2001. SH2 domains, interaction modules and cellular wiring. Trends Cell Biol 11: 504-11.
    • (2001) Trends Cell Biol , vol.11 , pp. 504-511
    • Pawson, T.1    Gish, G.D.2    Nash, P.3
  • 25
    • 34250641161 scopus 로고    scopus 로고
    • High-throughput phosphotyrosine profiling using SH2 domains
    • Machida K, Thompson CM, Dierck K, Jablonowski K, et al. 2007. High-throughput phosphotyrosine profiling using SH2 domains. Mol Cell 26: 899-915.
    • (2007) Mol Cell , vol.26 , pp. 899-915
    • Machida, K.1    Thompson, C.M.2    Dierck, K.3    Jablonowski, K.4
  • 26
    • 0028874953 scopus 로고
    • PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities
    • Wolf G, Trub T, Ottinger E, Groninga L, et al. 1995. PTB domains of IRS-1 and Shc have distinct but overlapping binding specificities. J Biol Chem 270: 27407-10.
    • (1995) J Biol Chem , vol.270 , pp. 27407-27410
    • Wolf, G.1    Trub, T.2    Ottinger, E.3    Groninga, L.4
  • 28
    • 84871286150 scopus 로고    scopus 로고
    • Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances
    • Siddle K. 2012. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne) 3: 34.
    • (2012) Front Endocrinol (Lausanne) , vol.3 , pp. 34
    • Siddle, K.1
  • 29
    • 0032560753 scopus 로고    scopus 로고
    • Crystal structure of the first three domains of the type-1 insulin-like growth factor receptor
    • Garrett TP, McKern NM, Lou M, Frenkel MJ, et al. 1998. Crystal structure of the first three domains of the type-1 insulin-like growth factor receptor. Nature 394: 395-9.
    • (1998) Nature , vol.394 , pp. 395-399
    • Garrett, T.P.1    McKern, N.M.2    Lou, M.3    Frenkel, M.J.4
  • 30
    • 33747584896 scopus 로고    scopus 로고
    • The first three domains of the insulin receptor differ structurally from the insulin-like growth factor 1 receptor in the regions governing ligand specificity
    • Lou M, Garrett TP, McKern NM, Hoyne PA, et al. 2006. The first three domains of the insulin receptor differ structurally from the insulin-like growth factor 1 receptor in the regions governing ligand specificity. Proc Natl Acad Sci USA 103: 12429-34.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 12429-12434
    • Lou, M.1    Garrett, T.P.2    McKern, N.M.3    Hoyne, P.A.4
  • 31
    • 33748639228 scopus 로고    scopus 로고
    • Structure of the insulin receptor ectodomain reveals a folded-over conformation
    • McKern NM, Lawrence MC, Streltsov VA, Lou MZ, et al. 2006. Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature 443: 218-21.
    • (2006) Nature , vol.443 , pp. 218-221
    • McKern, N.M.1    Lawrence, M.C.2    Streltsov, V.A.3    Lou, M.Z.4
  • 32
    • 0032773139 scopus 로고    scopus 로고
    • Single-molecule imaging of human insulin receptor ectodomain and its Fab complexes
    • Tulloch PA, Lawrence LJ, McKern NM, Robinson CP, et al. 1999. Single-molecule imaging of human insulin receptor ectodomain and its Fab complexes. J Struct Biol 125: 11-8.
    • (1999) J Struct Biol , vol.125 , pp. 11-18
    • Tulloch, P.A.1    Lawrence, L.J.2    McKern, N.M.3    Robinson, C.P.4
  • 33
    • 77951058594 scopus 로고    scopus 로고
    • Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists
    • Smith BJ, Huang K, Kong G, Chan SJ, et al. 2010. Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists. Proc Natl Acad Sci USA 107: 6771-6.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 6771-6776
    • Smith, B.J.1    Huang, K.2    Kong, G.3    Chan, S.J.4
  • 34
    • 0027960567 scopus 로고
    • Cross-linking of a B25 azidophenylalanine insulin derivative to the carboxyl-terminal region of the α-subunit of the insulin receptor. Identification of a new insulin-binding domain in the insulin receptor
    • Kurose T, Pashmforoush M, Yoshimasa Y, Carroll R, et al. 1994. Cross-linking of a B25 azidophenylalanine insulin derivative to the carboxyl-terminal region of the α-subunit of the insulin receptor. Identification of a new insulin-binding domain in the insulin receptor. J Biol Chem 269: 29190-7.
    • (1994) J Biol Chem , vol.269 , pp. 29190-29197
    • Kurose, T.1    Pashmforoush, M.2    Yoshimasa, Y.3    Carroll, R.4
  • 35
    • 0032504250 scopus 로고    scopus 로고
    • Expression and characterization of a 70-kDa fragment of the insulin receptor that binds insulin. Minimizing ligand binding domain of the insulin receptor
    • Kristensen C, Wiberg FC, Schäffer L, Andersen AS. 1998. Expression and characterization of a 70-kDa fragment of the insulin receptor that binds insulin. Minimizing ligand binding domain of the insulin receptor. J Biol Chem 273: 17780-6.
    • (1998) J Biol Chem , vol.273 , pp. 17780-17786
    • Kristensen, C.1    Wiberg, F.C.2    Schäffer, L.3    Andersen, A.S.4
  • 36
    • 13344279398 scopus 로고    scopus 로고
    • Alanine-scanning mutagenesis of a C-terminal ligand binding domain of the insulin receptor α subunit
    • Mynarcik DC, Yu GQ, Whittaker J. 1996. Alanine-scanning mutagenesis of a C-terminal ligand binding domain of the insulin receptor α subunit. J Biol Chem 271: 2439-42.
    • (1996) J Biol Chem , vol.271 , pp. 2439-2442
    • Mynarcik, D.C.1    Yu, G.Q.2    Whittaker, J.3
  • 37
    • 0030756092 scopus 로고    scopus 로고
    • Identification of common ligand binding determinants of the insulin and insulin-like growth factor 1 receptors. Insights into mechanisms of ligand binding
    • Mynarcik DC, Williams PF, Schäffer L, Yu GQ, et al. 1997. Identification of common ligand binding determinants of the insulin and insulin-like growth factor 1 receptors. Insights into mechanisms of ligand binding. J Biol Chem 272: 18650-5.
    • (1997) J Biol Chem , vol.272 , pp. 18650-18655
    • Mynarcik, D.C.1    Williams, P.F.2    Schäffer, L.3    Yu, G.Q.4
  • 38
    • 3142579218 scopus 로고    scopus 로고
    • Diabetes-associated mutations in insulin: consecutive residues in the B chain contact distinct domains of the insulin receptor
    • Xu B, Hu SQ, Chu YC, Huang K, et al. 2004. Diabetes-associated mutations in insulin: consecutive residues in the B chain contact distinct domains of the insulin receptor. Biochemistry 43: 8356-72.
    • (2004) Biochemistry , vol.43 , pp. 8356-8372
    • Xu, B.1    Hu, S.Q.2    Chu, Y.C.3    Huang, K.4
  • 39
    • 33847619358 scopus 로고    scopus 로고
    • The insulin and EGF receptor structures: new insights into ligand-induced receptor activation
    • Ward CW, Lawrence MC, Streltsov VA, Adams TE, et al. 2007. The insulin and EGF receptor structures: new insights into ligand-induced receptor activation. Trends Biochem Sci 32: 129-37.
    • (2007) Trends Biochem Sci , vol.32 , pp. 129-137
    • Ward, C.W.1    Lawrence, M.C.2    Streltsov, V.A.3    Adams, T.E.4
  • 40
    • 34250306385 scopus 로고    scopus 로고
    • Complementation analysis demonstrates that insulin cross-links both α subunits in a truncated insulin receptor dimer
    • Chan SJ, Nakagawa S, Steiner DF. 2007. Complementation analysis demonstrates that insulin cross-links both α subunits in a truncated insulin receptor dimer. J Biol Chem 282: 13754-8.
    • (2007) J Biol Chem , vol.282 , pp. 13754-13758
    • Chan, S.J.1    Nakagawa, S.2    Steiner, D.F.3
  • 41
    • 84863884698 scopus 로고    scopus 로고
    • α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase
    • Whittaker J, Whittaker LJ, Roberts CT, Phillips NB, et al. 2012. α-Helical element at the hormone-binding surface of the insulin receptor functions as a signaling element to activate its tyrosine kinase. Proc Natl Acad Sci USA 109: 11166-71.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 11166-11171
    • Whittaker, J.1    Whittaker, L.J.2    Roberts, C.T.3    Phillips, N.B.4
  • 42
    • 0025996911 scopus 로고
    • Receptor binding redefined by a structural switch in a mutant human insulin
    • Hua QX, Shoelson SE, Kochoyan M, Weiss MA. 1991. Receptor binding redefined by a structural switch in a mutant human insulin. Nature 354: 238-41.
    • (1991) Nature , vol.354 , pp. 238-241
    • Hua, Q.X.1    Shoelson, S.E.2    Kochoyan, M.3    Weiss, M.A.4
  • 43
    • 0032577326 scopus 로고    scopus 로고
    • A structural switch in a mutant insulin exposes key residues for receptor binding
    • Ludvigsen S, Olsen HB, Kaarsholm NC. 1998. A structural switch in a mutant insulin exposes key residues for receptor binding. J Mol Biol 279: 1-7.
    • (1998) J Mol Biol , vol.279 , pp. 1-7
    • Ludvigsen, S.1    Olsen, H.B.2    Kaarsholm, N.C.3
  • 44
    • 67649827251 scopus 로고    scopus 로고
    • Decoding the cryptic active conformation of a protein by synthetic photo-scanning. Insulin inserts a detachable arm between receptor domains
    • Xu B, Huang K, Chu YC, Hu SQ, et al. 2009. Decoding the cryptic active conformation of a protein by synthetic photo-scanning. Insulin inserts a detachable arm between receptor domains. J Biol Chem 284: 14597-608.
    • (2009) J Biol Chem , vol.284 , pp. 14597-14608
    • Xu, B.1    Huang, K.2    Chu, Y.C.3    Hu, S.Q.4
  • 45
    • 76649083949 scopus 로고    scopus 로고
    • Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues
    • Jiráček J, Záková L, Antolíková E, Watson CJ, et al. 2010. Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues. Proc Natl Acad Sci USA 107: 1966-70.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 1966-1970
    • Jiráček, J.1    Záková, L.2    Antolíková, E.3    Watson, C.J.4
  • 46
    • 0025880180 scopus 로고
    • X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue
    • Derewenda U, Derewenda Z, Dodson EJ, Dodson GG, et al. 1991. X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue. J Mol Biol 220: 425-33.
    • (1991) J Mol Biol , vol.220 , pp. 425-433
    • Derewenda, U.1    Derewenda, Z.2    Dodson, E.J.3    Dodson, G.G.4
  • 47
    • 16344367907 scopus 로고    scopus 로고
    • Diabetes-associated mutations in human insulin: crystal structure and photo-cross-linking studies of A-chain variant insulin Wakayama
    • Wan ZL, Huang K, Xu B, Hu SQ, et al. 2005. Diabetes-associated mutations in human insulin: crystal structure and photo-cross-linking studies of A-chain variant insulin Wakayama. Biochemistry 44: 5000-16.
    • (2005) Biochemistry , vol.44 , pp. 5000-5016
    • Wan, Z.L.1    Huang, K.2    Xu, B.3    Hu, S.Q.4
  • 48
    • 79958138362 scopus 로고    scopus 로고
    • Fine details of IGF-1R activation, inhibition, and asymmetry determined by associated hydrogen/deuterium-exchange and peptide mass mapping
    • Houde D, Demarest SJ. 2011. Fine details of IGF-1R activation, inhibition, and asymmetry determined by associated hydrogen/deuterium-exchange and peptide mass mapping. Structure 19: 890-900.
    • (2011) Structure , vol.19 , pp. 890-900
    • Houde, D.1    Demarest, S.J.2
  • 49
    • 0033601260 scopus 로고    scopus 로고
    • Specificity of insulin and insulin-like growth factor I receptors investigated using chimeric mini-receptors. Role of C-terminal of receptor α subunit
    • Kristensen C, Wiberg FC, Andersen AS. 1999. Specificity of insulin and insulin-like growth factor I receptors investigated using chimeric mini-receptors. Role of C-terminal of receptor α subunit. J Biol Chem 274: 37351-6.
    • (1999) J Biol Chem , vol.274 , pp. 37351-37356
    • Kristensen, C.1    Wiberg, F.C.2    Andersen, A.S.3
  • 50
    • 56349123217 scopus 로고    scopus 로고
    • A comparative structural bioinformatics analysis of the insulin receptor family ectodomain based on phylogenetic information
    • Rentería ME, Gandhi NS, Vinuesa P, Helmerhorst E, et al. 2008. A comparative structural bioinformatics analysis of the insulin receptor family ectodomain based on phylogenetic information. PLoS One 3: e3667.
    • (2008) PLoS One , vol.3
    • Rentería, M.E.1    Gandhi, N.S.2    Vinuesa, P.3    Helmerhorst, E.4
  • 51
    • 79958068190 scopus 로고    scopus 로고
    • Insulin receptor-related receptor as an extracellular alkali sensor
    • Deyev IE, Sohet F, Vassilenko KP, Serova OV, et al. 2011. Insulin receptor-related receptor as an extracellular alkali sensor. Cell Metab 13: 679-89.
    • (2011) Cell Metab , vol.13 , pp. 679-689
    • Deyev, I.E.1    Sohet, F.2    Vassilenko, K.P.3    Serova, O.V.4
  • 53
    • 0024272934 scopus 로고
    • Localization of the insulin-binding site to the cysteine-rich region of the insulin receptor α-subunit
    • Yip CC, Hsu H, Patel RG, Hawley DM, et al. 1988. Localization of the insulin-binding site to the cysteine-rich region of the insulin receptor α-subunit. Biochem Biophys Res Commun 157: 321-9.
    • (1988) Biochem Biophys Res Commun , vol.157 , pp. 321-329
    • Yip, C.C.1    Hsu, H.2    Patel, R.G.3    Hawley, D.M.4
  • 54
    • 0024538665 scopus 로고
    • Hormone binding site of the insulin receptor: analysis using photoaffinity-mediated avidin complexing
    • Wedekind F, Baer-Pontzen K, Bala-Mohan S, Choli D, et al. 1989. Hormone binding site of the insulin receptor: analysis using photoaffinity-mediated avidin complexing. Biol Chem Hoppe Seyler 370: 251-8.
    • (1989) Biol Chem Hoppe Seyler , vol.370 , pp. 251-258
    • Wedekind, F.1    Baer-Pontzen, K.2    Bala-Mohan, S.3    Choli, D.4
  • 55
    • 0017195548 scopus 로고
    • Structure of insulin in 4-zinc insulin
    • Bentley G, Dodson E, Dodson G, Hodgkin D, et al. 1976. Structure of insulin in 4-zinc insulin. Nature 261: 166-8.
    • (1976) Nature , vol.261 , pp. 166-168
    • Bentley, G.1    Dodson, E.2    Dodson, G.3    Hodgkin, D.4
  • 56
    • 16344376210 scopus 로고    scopus 로고
    • Chiral mutagenesis of insulin. Foldability and function are inversely regulated by a stereospecific switch in the B chain
    • Nakagawa SH, Zhao M, Hua QX, Hu SQ, et al. 2005. Chiral mutagenesis of insulin. Foldability and function are inversely regulated by a stereospecific switch in the B chain. Biochemistry 44: 4984-99.
    • (2005) Biochemistry , vol.44 , pp. 4984-4999
    • Nakagawa, S.H.1    Zhao, M.2    Hua, Q.X.3    Hu, S.Q.4
  • 57
    • 57049086436 scopus 로고    scopus 로고
    • High-affinity insulin binding: Insulin interacts with two receptor ligand binding sites
    • Whittaker L, Hao C, Fu W, Whittaker J. 2008. High-affinity insulin binding: Insulin interacts with two receptor ligand binding sites. Biochemistry 47: 12900-9.
    • (2008) Biochemistry , vol.47 , pp. 12900-12909
    • Whittaker, L.1    Hao, C.2    Fu, W.3    Whittaker, J.4
  • 58
    • 0027471973 scopus 로고
    • Signaling-competent receptor chimeras allow mapping of major insulin receptor binding domain determinants
    • Schumacher R, Soos MA, Schlessinger J, Brandenburg D, et al. 1993. Signaling-competent receptor chimeras allow mapping of major insulin receptor binding domain determinants. J Biol Chem 268: 1087-94.
    • (1993) J Biol Chem , vol.268 , pp. 1087-1094
    • Schumacher, R.1    Soos, M.A.2    Schlessinger, J.3    Brandenburg, D.4
  • 59
    • 34247872895 scopus 로고    scopus 로고
    • Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation
    • Benyoucef S, Surinya KH, Hadaschik D, Siddle K. 2007. Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem J 403: 603-13.
    • (2007) Biochem J , vol.403 , pp. 603-613
    • Benyoucef, S.1    Surinya, K.H.2    Hadaschik, D.3    Siddle, K.4
  • 60
    • 0034194305 scopus 로고    scopus 로고
    • Mutational analysis of the N-linked glycosylation sites of the human insulin receptor
    • Elleman TC, Frenkel MJ, Hoyne PA, McKern NM, et al. 2000. Mutational analysis of the N-linked glycosylation sites of the human insulin receptor. Biochem J 347: 771-9.
    • (2000) Biochem J , vol.347 , pp. 771-779
    • Elleman, T.C.1    Frenkel, M.J.2    Hoyne, P.A.3    McKern, N.M.4
  • 61
    • 70449632130 scopus 로고    scopus 로고
    • Solution structure of ectodomains of the insulin receptor family: the ectodomain of the type 1 insulin-like growth factor receptor displays asymmetry of ligand binding accompanied by limited conformational change
    • Whitten AE, Smith BJ, Menting JG, Margetts MB, et al. 2009. Solution structure of ectodomains of the insulin receptor family: the ectodomain of the type 1 insulin-like growth factor receptor displays asymmetry of ligand binding accompanied by limited conformational change. J Mol Biol 394: 878-92.
    • (2009) J Mol Biol , vol.394 , pp. 878-892
    • Whitten, A.E.1    Smith, B.J.2    Menting, J.G.3    Margetts, M.B.4
  • 62
    • 41949106937 scopus 로고    scopus 로고
    • An investigation of the ligand binding properties and negative cooperativity of soluble insulin-like growth factor receptors
    • Surinya KH, Forbes BE, Occhiodoro F, Booker GW, et al. 2008. An investigation of the ligand binding properties and negative cooperativity of soluble insulin-like growth factor receptors. J Biol Chem 283: 5355-63.
    • (2008) J Biol Chem , vol.283 , pp. 5355-5363
    • Surinya, K.H.1    Forbes, B.E.2    Occhiodoro, F.3    Booker, G.W.4
  • 63
    • 10744230127 scopus 로고    scopus 로고
    • An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors
    • Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, et al. 2003. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 12: 541-52.
    • (2003) Mol Cell , vol.12 , pp. 541-552
    • Burgess, A.W.1    Cho, H.S.2    Eigenbrot, C.3    Ferguson, K.M.4
  • 64
    • 0027184568 scopus 로고
    • Molecular dynamics of insulin/IGF-I receptor transmembrane signaling
    • discussion 44-5.
    • Pessin JE, Frattali AL. 1993. Molecular dynamics of insulin/IGF-I receptor transmembrane signaling. Mol Reprod Dev 35: 339-44 discussion 44-5.
    • (1993) Mol Reprod Dev , vol.35 , pp. 339-344
    • Pessin, J.E.1    Frattali, A.L.2
  • 65
    • 0028086357 scopus 로고
    • A novel human insulin receptor gene mutation uniquely inhibits insulin binding without impairing posttranslational processing
    • Roach P, Zick Y, Formisano P, Accili D, et al. 1994. A novel human insulin receptor gene mutation uniquely inhibits insulin binding without impairing posttranslational processing. Diabetes 43: 1096-102.
    • (1994) Diabetes , vol.43 , pp. 1096-1102
    • Roach, P.1    Zick, Y.2    Formisano, P.3    Accili, D.4
  • 66
    • 0026083942 scopus 로고
    • A mutation in the extracellular domain of the insulin receptor impairs the ability of insulin to stimulate receptor autophosphorylation
    • Accili D, Mosthaf L, Ullrich A, Taylor SI. 1991. A mutation in the extracellular domain of the insulin receptor impairs the ability of insulin to stimulate receptor autophosphorylation. J Biol Chem 266: 434-9.
    • (1991) J Biol Chem , vol.266 , pp. 434-439
    • Accili, D.1    Mosthaf, L.2    Ullrich, A.3    Taylor, S.I.4
  • 67
    • 0027217525 scopus 로고
    • Antibodies to the extracellular receptor domain restore the hormone-insensitive kinase and conformation of the mutant insulin receptor valine 382
    • Lebrun C, Baron V, Kaliman P, Gautier N, et al. 1993. Antibodies to the extracellular receptor domain restore the hormone-insensitive kinase and conformation of the mutant insulin receptor valine 382. J Biol Chem 268: 11272-7.
    • (1993) J Biol Chem , vol.268 , pp. 11272-11277
    • Lebrun, C.1    Baron, V.2    Kaliman, P.3    Gautier, N.4
  • 68
    • 0025635908 scopus 로고
    • Mutagenesis of lysine 460 in the human insulin receptor. Effects upon receptor recycling and cooperative interactions among binding sites
    • Kadowaki H, Kadowaki T, Cama A, Marcus-Samuels B, et al. 1990. Mutagenesis of lysine 460 in the human insulin receptor. Effects upon receptor recycling and cooperative interactions among binding sites. J Biol Chem 265: 21285-96.
    • (1990) J Biol Chem , vol.265 , pp. 21285-21296
    • Kadowaki, H.1    Kadowaki, T.2    Cama, A.3    Marcus-Samuels, B.4
  • 69
    • 0028861609 scopus 로고
    • Two mutant alleles of the insulin receptor gene in a family with a genetic form of insulin resistance: a 10 base pair deletion in exon 1 and a mutation substituting serine for asparagine-462
    • Cama A, Sierra ML, Kadowaki T, Kadowaki H, et al. 1995. Two mutant alleles of the insulin receptor gene in a family with a genetic form of insulin resistance: a 10 base pair deletion in exon 1 and a mutation substituting serine for asparagine-462. Hum Genet 95: 174-82.
    • (1995) Hum Genet , vol.95 , pp. 174-182
    • Cama, A.1    Sierra, M.L.2    Kadowaki, T.3    Kadowaki, H.4
  • 70
    • 0025367757 scopus 로고
    • Structural requirements for signal transduction of the insulin receptor
    • Flörke RR, Klein HW, Reinauer H. 1990. Structural requirements for signal transduction of the insulin receptor. Eur J Biochem 191: 473-82.
    • (1990) Eur J Biochem , vol.191 , pp. 473-482
    • Flörke, R.R.1    Klein, H.W.2    Reinauer, H.3
  • 71
    • 0035890470 scopus 로고    scopus 로고
    • Hormone-triggered conformational changes within the insulin-receptor ectodomain: requirement for transmembrane anchors
    • Flörke RR, Schnaith K, Passlack W, Wichert M, et al. 2001. Hormone-triggered conformational changes within the insulin-receptor ectodomain: requirement for transmembrane anchors. Biochem J 360: 189-98.
    • (2001) Biochem J , vol.360 , pp. 189-198
    • Flörke, R.R.1    Schnaith, K.2    Passlack, W.3    Wichert, M.4
  • 72
    • 0025991222 scopus 로고
    • Immobilized insulin for high capacity affinity chromatography of insulin receptors
    • Markussen J, Halstrom J, Wiberg FC, Schäffer L. 1991. Immobilized insulin for high capacity affinity chromatography of insulin receptors. J Biol Chem 266: 18814-8.
    • (1991) J Biol Chem , vol.266 , pp. 18814-18818
    • Markussen, J.1    Halstrom, J.2    Wiberg, F.C.3    Schäffer, L.4
  • 73
    • 0028235085 scopus 로고
    • Negative cooperativity in the insulin-like growth factor-I receptor and a chimeric IGF-I/insulin receptor
    • Christoffersen CT, Bornfeldt KE, Rotella CM, Gonzales N, et al. 1994. Negative cooperativity in the insulin-like growth factor-I receptor and a chimeric IGF-I/insulin receptor. Endocrinology 135: 472-5.
    • (1994) Endocrinology , vol.135 , pp. 472-475
    • Christoffersen, C.T.1    Bornfeldt, K.E.2    Rotella, C.M.3    Gonzales, N.4
  • 74
    • 0034637501 scopus 로고    scopus 로고
    • High affinity insulin binding by soluble insulin receptor extracellular domain fused to a leucine zipper
    • Hoyne PA, Cosgrove LJ, McKern NM, Bentley JD, et al. 2000. High affinity insulin binding by soluble insulin receptor extracellular domain fused to a leucine zipper. FEBS Lett 479: 15-8.
    • (2000) FEBS Lett , vol.479 , pp. 15-18
    • Hoyne, P.A.1    Cosgrove, L.J.2    McKern, N.M.3    Bentley, J.D.4
  • 75
    • 0035853774 scopus 로고    scopus 로고
    • Dimeric fragment of the insulin receptor α-subunit binds insulin with full holoreceptor affinity
    • Brandt J, Andersen AS, Kristensen C. 2001. Dimeric fragment of the insulin receptor α-subunit binds insulin with full holoreceptor affinity. J Biol Chem 276: 12378-84.
    • (2001) J Biol Chem , vol.276 , pp. 12378-12384
    • Brandt, J.1    Andersen, A.S.2    Kristensen, C.3
  • 76
    • 0037053344 scopus 로고    scopus 로고
    • Role of insulin receptor dimerization domains in ligand binding, cooperativity, and modulation by anti-receptor antibodies
    • Surinya KH, Molina L, Soos MA, Brandt J, et al. 2002. Role of insulin receptor dimerization domains in ligand binding, cooperativity, and modulation by anti-receptor antibodies. J Biol Chem 277: 16718-25.
    • (2002) J Biol Chem , vol.277 , pp. 16718-16725
    • Surinya, K.H.1    Molina, L.2    Soos, M.A.3    Brandt, J.4
  • 77
    • 0026690342 scopus 로고
    • Substitution of the insulin receptor transmembrane domain with the c-neu/erbB2 transmembrane domain constitutively activates the insulin receptor kinase in vitro
    • Yamada K, Goncalves E, Kahn CR, Shoelson SE. 1992. Substitution of the insulin receptor transmembrane domain with the c-neu/erbB2 transmembrane domain constitutively activates the insulin receptor kinase in vitro. J Biol Chem 267: 12452-61.
    • (1992) J Biol Chem , vol.267 , pp. 12452-12461
    • Yamada, K.1    Goncalves, E.2    Kahn, C.R.3    Shoelson, S.E.4
  • 78
    • 0025874250 scopus 로고
    • Evidence supporting a passive role for the insulin receptor transmembrane domain in insulin-dependent signal transduction
    • Frattali AL, Treadway JL, Pessin JE. 1991. Evidence supporting a passive role for the insulin receptor transmembrane domain in insulin-dependent signal transduction. J Biol Chem 266: 9829-34.
    • (1991) J Biol Chem , vol.266 , pp. 9829-9834
    • Frattali, A.L.1    Treadway, J.L.2    Pessin, J.E.3
  • 79
    • 0029615373 scopus 로고
    • Insulin receptor transmembrane signaling: evidence for an intermolecular oligomerization mechanism of activation
    • Mynarcik DC, Whittaker J. 1995. Insulin receptor transmembrane signaling: evidence for an intermolecular oligomerization mechanism of activation. J Recept Signal Transduct Res 15: 887-904.
    • (1995) J Recept Signal Transduct Res , vol.15 , pp. 887-904
    • Mynarcik, D.C.1    Whittaker, J.2
  • 80
    • 84873280409 scopus 로고    scopus 로고
    • Conformational coupling across the plasma membrane in activation of the EGF receptor
    • Endres NF, Das R, Smith AW, Arkhipov A, et al. 2013. Conformational coupling across the plasma membrane in activation of the EGF receptor. Cell 152: 543-56.
    • (2013) Cell , vol.152 , pp. 543-556
    • Endres, N.F.1    Das, R.2    Smith, A.W.3    Arkhipov, A.4
  • 81
    • 84873292211 scopus 로고    scopus 로고
    • Architecture and membrane interactions of the EGF receptor
    • Arkhipov A, Shan Y, Das R, Endres NF, et al. 2013. Architecture and membrane interactions of the EGF receptor. Cell 152: 557-69.
    • (2013) Cell , vol.152 , pp. 557-569
    • Arkhipov, A.1    Shan, Y.2    Das, R.3    Endres, N.F.4
  • 82
    • 65449168837 scopus 로고    scopus 로고
    • Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor
    • Ward CW, Lawrence MC. 2009. Ligand-induced activation of the insulin receptor: a multi-step process involving structural changes in both the ligand and the receptor. BioEssays 31: 422-34.
    • (2009) BioEssays , vol.31 , pp. 422-434
    • Ward, C.W.1    Lawrence, M.C.2
  • 84
    • 84862616645 scopus 로고    scopus 로고
    • Similar but different: ligand-induced activation of the insulin and epidermal growth factor receptor families
    • Ward CW, Lawrence MC. 2012. Similar but different: ligand-induced activation of the insulin and epidermal growth factor receptor families. Curr Opin Struct Biol 22: 360-6.
    • (2012) Curr Opin Struct Biol , vol.22 , pp. 360-366
    • Ward, C.W.1    Lawrence, M.C.2
  • 85
    • 0026528956 scopus 로고
    • Insulin/IGF-1 hybrid receptors: implications for the dominant-negative phenotype in syndromes of insulin resistance
    • Frattali AL, Treadway JL, Pessin JE. 1992. Insulin/IGF-1 hybrid receptors: implications for the dominant-negative phenotype in syndromes of insulin resistance. J Cell Biochem 48: 43-50.
    • (1992) J Cell Biochem , vol.48 , pp. 43-50
    • Frattali, A.L.1    Treadway, J.L.2    Pessin, J.E.3
  • 86
    • 0038168241 scopus 로고    scopus 로고
    • Structural and biochemical evidence for an autoinhibitory role for tyrosine 984 in the juxtamembrane region of the insulin receptor
    • Li S, Covino ND, Stein EG, Till JH, et al. 2003. Structural and biochemical evidence for an autoinhibitory role for tyrosine 984 in the juxtamembrane region of the insulin receptor. J Biol Chem 278: 26007-14.
    • (2003) J Biol Chem , vol.278 , pp. 26007-26014
    • Li, S.1    Covino, N.D.2    Stein, E.G.3    Till, J.H.4
  • 87
    • 34250895565 scopus 로고    scopus 로고
    • Autoinhibition of the insulin-like growth factor I receptor by the juxtamembrane region
    • Craddock BP, Cotter C, Miller WT. 2007. Autoinhibition of the insulin-like growth factor I receptor by the juxtamembrane region. FEBS Lett 581: 3235-40.
    • (2007) FEBS Lett , vol.581 , pp. 3235-3240
    • Craddock, B.P.1    Cotter, C.2    Miller, W.T.3
  • 88
    • 0026470979 scopus 로고
    • The insulin receptor activation process involves localized conformational changes
    • Baron V, Kaliman P, Gautier N, Van Obberghen E. 1992. The insulin receptor activation process involves localized conformational changes. J Biol Chem 267: 23290-4.
    • (1992) J Biol Chem , vol.267 , pp. 23290-23294
    • Baron, V.1    Kaliman, P.2    Gautier, N.3    Van Obberghen, E.4
  • 89
    • 83755207591 scopus 로고    scopus 로고
    • Structural analysis of macromolecular assemblies by electron microscopy
    • Orlova EV, Saibil HR. 2011. Structural analysis of macromolecular assemblies by electron microscopy. Chem Rev 111: 7710-48.
    • (2011) Chem Rev , vol.111 , pp. 7710-7748
    • Orlova, E.V.1    Saibil, H.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.