메뉴 건너뛰기




Volumn 6, Issue 4, 2009, Pages 767-771

Using diffusion geometric coordinates for hyperspectral imagery representation

Author keywords

Diffusion geometric coordinates; Diffusion maps; Hyperspectral imagery; Nonlinear dimension reduction

Indexed keywords

CLASSIFICATION RESULTS; COMPUTATION COMPLEXITY; DIFFUSION MAPS; DIFFUSION OPERATORS; HIGH DIMENSIONAL DATA; HYPERSPECTRAL DATA; HYPERSPECTRAL IMAGERY; HYPERSPECTRAL REMOTE SENSING; INTRINSIC GEOMETRY; LINEAR METHODS; MEMORY REQUIREMENTS; NON-LINEAR MANIFOLD LEARNING; NONLINEAR DIMENSION REDUCTION; PRINCIPLE COMPONENT ANALYSIS; RANDOM WALK; SPATIAL DISTRIBUTION;

EID: 70350304576     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2009.2025058     Document Type: Article
Times cited : (32)

References (17)
  • 2
    • 39049167499 scopus 로고    scopus 로고
    • Improved manifold coordinate representations of large-scale hyperspectral scenes
    • Oct.
    • C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, "Improved manifold coordinate representations of large-scale hyperspectral scenes," IEEE Trans. Geosci. Remote Sens., vol.44, no.10, pp. 2786-2803, Oct. 2006.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , Issue.10 , pp. 2786-2803
    • Bachmann, C.M.1    Ainsworth, T.L.2    Fusina, R.A.3
  • 3
    • 34247356156 scopus 로고    scopus 로고
    • Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images
    • Apr.
    • A. Mohan, G. Sapiro, and E. Bosch, "Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol.4, no.2, pp. 206-210, Apr. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.2 , pp. 206-210
    • Mohan, A.1    Sapiro, G.2    Bosch, E.3
  • 4
    • 0023854011 scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • Jan.
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol.26, no.1, pp. 65-74, Jan. 1988.
    • (1988) IEEE Trans. Geosci. Remote Sens. , vol.26 , Issue.1 , pp. 65-74
    • Green, A.A.1    Berman, M.2    Switzer, P.3    Craig, M.D.4
  • 5
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Dec. 22
    • J. B. Tenenbaum, V. Silva, and J. C. Langford, "A global geometric framework for nonlinear dimensionality reduction," Science, vol.290, no.5500, pp. 2319-2323, Dec. 22, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    Silva, V.2    Langford, J.C.3
  • 6
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Dec. 22
    • S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol.290, no.5500, pp. 2323-2326, Dec. 22, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 7
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Jun.
    • M. Belkin and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction and data representation," Neural Comput., vol.15, no.6, pp. 1373- 1396, Jun. 2003.
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 12
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • Feb.
    • L. K. Saul and S. T. Roweis, "Think globally, fit locally: Unsupervised learning of low dimensional manifolds," J. Mach. Learn. Res., vol.4, no.2, pp. 119-155, Feb. 2003.
    • (2003) J. Mach. Learn. Res. , vol.4 , Issue.2 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 13
    • 26944489604 scopus 로고    scopus 로고
    • From graphs to manifoldsweak and strong pointwise consistency of graph Laplacians
    • M. Hein, J. Y. Audibert, and U. von Luxburg, "From graphs to manifoldsweak and strong pointwise consistency of graph Laplacians," in Proc. 18th COLT, 2005, pp. 470-485.
    • (2005) Proc. 18th COLT , pp. 470-485
    • Hein, M.1    Audibert, J.Y.2    Von Luxburg, U.3
  • 14
    • 0032201716 scopus 로고    scopus 로고
    • An optimal algorithm for approximate nearest neighbor searching
    • Nov.
    • S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu, "An optimal algorithm for approximate nearest neighbor searching," J. ACM, vol.45, no.6, pp. 891-923, Nov. 1998.
    • (1998) J. ACM , vol.45 , Issue.6 , pp. 891-923
    • Arya, S.1    Mount, D.M.2    Netanyahu, N.S.3    Silverman, R.4    Wu, A.5
  • 15
    • 70350343214 scopus 로고    scopus 로고
    • [Online]
    • [Online]. Available: http://www.ece.purdue.edu/∼biehl/MultiSpec/ documentation.html
  • 16
    • 70350340145 scopus 로고    scopus 로고
    • [Online]
    • [Online]. Available: http://aviris.jpl.nasa.gov/html/aviris.instrument. html
  • 17
    • 65049083029 scopus 로고    scopus 로고
    • Improving hyperspectral image classification using spatial preprocessing
    • Apr.
    • S. Velasco-Forero and V. Manian, "Improving hyperspectral image classification using spatial preprocessing," IEEE Geosci. Remote Sens. Lett., vol.6, no.2, pp. 297-301, Apr. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.2 , pp. 297-301
    • Velasco-Forero, S.1    Manian, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.