메뉴 건너뛰기




Volumn 19, Issue , 2011, Pages 635-660

Optimal aggregation of affine estimators

Author keywords

List of keywords

Indexed keywords

ESTIMATION; GAUSSIAN NOISE (ELECTRONIC); INVERSE PROBLEMS; REGRESSION ANALYSIS;

EID: 84898450217     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (49)
  • 1
    • 79960999147 scopus 로고    scopus 로고
    • Pac-bayesian bounds for sparse regression estimation with exponential weights
    • P. Alquier and K. Lounici. Pac-bayesian bounds for sparse regression estimation with exponential weights. Electron. J. Statist., 5:127-145, 2010.
    • (2010) Electron. J. Statist. , vol.5 , pp. 127-145
    • Alquier, P.1    Lounici, K.2
  • 2
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • Y. Amit and D. Geman. Shape quantization and recognition with randomized trees. Neural Comput., 9:1545-1588, October 1997. (Pubitemid 127462804)
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1545-1588
    • Amit, Y.1    Geman, D.2
  • 3
    • 84858713046 scopus 로고    scopus 로고
    • Data-driven calibration of linear estimators with minimal penalties
    • S. Arlot and F. Bach. Data-driven calibration of linear estimators with minimal penalties. In NIPS, pages 46-54, 2009.
    • (2009) NIPS , pp. 46-54
    • Arlot, S.1    Bach, F.2
  • 4
    • 68649088331 scopus 로고    scopus 로고
    • Fast learning rates in statistical inference through aggregation
    • J-Y. Audibert. Fast learning rates in statistical inference through aggregation. Ann. Statist., 37 (4):1591-1646, 2009.
    • (2009) Ann. Statist. , vol.37 , Issue.4 , pp. 1591-1646
    • Audibert, J.-Y.1
  • 5
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • F. Bach. Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res., 9: 1179-1225, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1179-1225
    • Bach, F.1
  • 6
    • 84898452428 scopus 로고    scopus 로고
    • Estimator selection in the gaussian setting
    • Y. Baraud, Ch. Giraud, and S. Huet. Estimator selection in the gaussian setting, submitted, 2010.
    • (2010) Submitted
    • Baraud, Y.1    Giraud, Ch.2    Huet, S.3
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Mach. Learn., 24(2):123-140, 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 9
    • 33645653318 scopus 로고    scopus 로고
    • A review of image denoising algorithms, with a new one
    • DOI 10.1137/040616024
    • A. Buades, B. Coll, and J-M. Morel. A review of image denoising algorithms, with a new one. Multiscale Model. Simul., 4(2):490-530, 2005. (Pubitemid 43890582)
    • (2005) Multiscale Modeling and Simulation , vol.4 , Issue.2 , pp. 490-530
    • Buades, A.1    Coll, B.2    Morel, J.M.3
  • 10
    • 38049043619 scopus 로고    scopus 로고
    • Aggregation for Gaussian regression
    • F. Bunea, A. B. Tsybakov, and M. H. Wegkamp. Aggregation for Gaussian regression. Ann. Statist., 35(4): 1674-1697, 2007.
    • (2007) Ann. Statist. , vol.35 , Issue.4 , pp. 1674-1697
    • Bunea, F.1    Tsybakov, A.B.2    Wegkamp, M.H.3
  • 11
    • 0033248624 scopus 로고    scopus 로고
    • Adaptive wavelet estimation: A block thresholding and oracle inequality approach
    • ISSN 0090-5364
    • T. T. Cai. Adaptive wavelet estimation: a block thresholding and oracle inequality approach. Ann. Statist., 27(3):898-924, 1999. ISSN 0090-5364.
    • (1999) Ann. Statist. , vol.27 , Issue.3 , pp. 898-924
    • Cai, T.T.1
  • 12
    • 33646360369 scopus 로고    scopus 로고
    • Statistical learning theory and stochastic optimization
    • Springer-Verlag, Berlin
    • O. Catoni. Statistical learning theory and stochastic optimization, volume 1851 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2004.
    • (2004) Lecture Notes in Mathematics , vol.1851
    • Catoni, O.1
  • 13
    • 0036045292 scopus 로고    scopus 로고
    • Oracle inequalities for inverse problems
    • DOI 10.1214/aos/1028674843
    • L. Cavalier, G. K. Golubev, D. Picard, and A. B. Tsybakov. Oracle inequalities for inverse problems. Ann. Statist., 30(3):843-874, 2002. (Pubitemid 37095353)
    • (2002) Annals of Statistics , vol.30 , Issue.3 , pp. 843-874
    • Cavalier, L.1    Golubev, G.K.2    Picard, D.3    Tsybakov, A.B.4
  • 14
    • 0346933613 scopus 로고
    • All admissible linear estimates of the mean vector
    • ISSN 00034851
    • A. Cohen. All admissible linear estimates of the mean vector. The Annals of Mathematical Statistics, 37(2):458-463, 1966. ISSN 00034851.
    • (1966) The Annals of Mathematical Statistics , vol.37 , Issue.2 , pp. 458-463
    • Cohen, A.1
  • 15
    • 80054109813 scopus 로고    scopus 로고
    • Sharp oracle inequalities for aggregation of affine estimators
    • [math.ST], April
    • A. S. Dalalyan and J. Salmon. Sharp oracle inequalities for aggregation of affine estimators. Technical Report arXiv:1104.3969v2 [math.ST], April 2011.
    • (2011) Technical Report ArXiv:1104.3969v2
    • Dalalyan, A.S.1    Salmon, J.2
  • 16
    • 38049046503 scopus 로고    scopus 로고
    • Aggregation by exponential weighting, sharp oracle inequalities and sparsity
    • A. S. Dalalyan and A. B. Tsybakov. Aggregation by exponential weighting, sharp oracle inequalities and sparsity. In COLT, pages 97-111, 2007.
    • (2007) COLT , pp. 97-111
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 17
    • 70350003059 scopus 로고    scopus 로고
    • Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity
    • A. S. Dalalyan and A. B. Tsybakov. Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity. Mach. Learn., 72(1-2):39-61, 2008.
    • (2008) Mach. Learn. , vol.72 , Issue.1-2 , pp. 39-61
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 18
    • 84898067794 scopus 로고    scopus 로고
    • Sparse regression learning by aggregation and Langevin Monte-Carlo
    • A. S. Dalalyan and A. B. Tsybakov. Sparse regression learning by aggregation and Langevin Monte-Carlo. In COLT, 2009.
    • (2009) COLT
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 19
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrilca, 81(3):425-455, 1994.
    • (1994) Biometrilca , vol.81 , Issue.3 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 20
    • 84950459514 scopus 로고
    • Adapting to unknown smoothness via wavelet shrinkage
    • D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc., 90(432):1200-1224, 1995.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , Issue.432 , pp. 1200-1224
    • Donoho, D.L.1    Johnstone, I.M.2
  • 21
    • 0030487422 scopus 로고    scopus 로고
    • On nonparametric regression for IID observations in a general setting
    • S. Y. Efromovich. On nonparametric regression for IID observations in a general setting. Ann. Statist., 24(3):1125-1144, 1996.
    • (1996) Ann. Statist. , vol.24 , Issue.3 , pp. 1125-1144
    • Efromovich, S.Y.1
  • 22
    • 0002409695 scopus 로고
    • A self-training algorithm for nonparametric filtering
    • S. Y. Efromovich and M. S. Pinsker. A self-training algorithm for nonparametric filtering. Avtomat. i Telemekh., 1 (11) :585, 1984.
    • (1984) Avtomat. I Telemekh. , vol.1 , Issue.11 , pp. 585
    • Efromovich, S.Y.1    Pinsker, M.S.2
  • 23
    • 21444456853 scopus 로고    scopus 로고
    • Sharp-optimal and adaptive estimation for heteroscedastic nonparametric regression
    • S. Y. Efromovich and M. S. Pinsker. Sharp-optimal and adaptive estimation for heteroscedastic nonparametric regression. Statist. Sinica, 6(4):925-942, 1996.
    • (1996) Statist. Sinica , vol.6 , Issue.4 , pp. 925-942
    • Efromovich, S.Y.1    Pinsker, M.S.2
  • 25
    • 0000497169 scopus 로고
    • Minimax multiple shrinkage estimation
    • E. I. George. Minimax multiple shrinkage estimation. Ann. Statist., 14(1):188-205, 1986.
    • (1986) Ann. Statist. , vol.14 , Issue.1 , pp. 188-205
    • George, E.I.1
  • 26
    • 58149358999 scopus 로고    scopus 로고
    • Mixing least-squares estimators when the variance is unknown
    • Ch. Giraud. Mixing least-squares estimators when the variance is unknown. Bernoulli, 14(4): 1089-1107, 2008.
    • (2008) Bernoulli , vol.14 , Issue.4 , pp. 1089-1107
    • Giraud, Ch.1
  • 27
    • 0026638554 scopus 로고
    • Nonparametric estimation of smooth densities of a distribution in L-2
    • G. K. Golubev. Nonparametric estimation of smooth densities of a distribution in L-2. Problemy Peredachi Informatsii, 28(1):52-62, 1992.
    • (1992) Problemy Peredachi Informatsii , vol.28 , Issue.1 , pp. 52-62
    • Golubev, G.K.1
  • 28
    • 77957596336 scopus 로고    scopus 로고
    • On universal oracle inequalities related to high-dimensional linear models
    • Y. Golubev. On universal oracle inequalities related to high-dimensional linear models. Ann. Statist., 38(5):2751-2780, 2010.
    • (2010) Ann. Statist. , vol.38 , Issue.5 , pp. 2751-2780
    • Golubev, Y.1
  • 29
    • 0034362823 scopus 로고    scopus 로고
    • Functional aggregation for nonparametric regression
    • A. B. Juditsky and A. S. Nemirovski. Functional aggregation for nonparametric regression. Ann. Statist., 28(3):681-712, 2000.
    • (2000) Ann. Statist. , vol.28 , Issue.3 , pp. 681-712
    • Juditsky, A.B.1    Nemirovski, A.S.2
  • 30
    • 67650395681 scopus 로고    scopus 로고
    • Nonparametric denoising of signals with unknown local structure. I. Oracle inequalities
    • A. B. Juditsky and A. S. Nemirovski. Nonparametric denoising of signals with unknown local structure. I. Oracle inequalities. Appil Comput. Harmon. Anal., 27(2):157-179, 2009.
    • (2009) Appil Comput. Harmon. Anal. , vol.27 , Issue.2 , pp. 157-179
    • Juditsky, A.B.1    Nemirovski, A.S.2
  • 32
    • 47249139879 scopus 로고    scopus 로고
    • Optimal rates of aggregation in classification under low noise assumption
    • G. Lecué. Optimal rates of aggregation in classification under low noise assumption. Bernoulli, 13(4):1000-1022, 2007.
    • (2007) Bernoulli , vol.13 , Issue.4 , pp. 1000-1022
    • Lecué, G.1
  • 34
    • 33746478298 scopus 로고    scopus 로고
    • Information theory and mixing least-squares regressions
    • DOI 10.1109/TIT.2006.878172
    • G. Leung and A. R. Barron. Information theory and mixing least-squares regressions. IEEE Trans. Inf. Theory, 52(8):3396-3410, 2006. (Pubitemid 44145107)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.8 , pp. 3396-3410
    • Leung, G.1    Barron, A.R.2
  • 35
    • 79952905234 scopus 로고    scopus 로고
    • Generalized mirror averaging and D-convex aggregation
    • K. Lounici. Generalized mirror averaging and D-convex aggregation. Math. Methods Statist., 16 (3):246-259, 2007.
    • (2007) Math. Methods Statist. , vol.16 , Issue.3 , pp. 246-259
    • Lounici, K.1
  • 36
    • 0007259908 scopus 로고    scopus 로고
    • Topics in non-parametric statistics
    • Springer, Berlin
    • A. S. Nemirovski. Topics in non-parametric statistics, volume 1738 of Lecture Notes in Math. Springer, Berlin, 2000.
    • (2000) Lecture Notes in Math , vol.1738
    • Nemirovski, A.S.1
  • 37
    • 0000056063 scopus 로고
    • Optimal filtration of square-integrable signals in Gaussian noise
    • M. S. Pinsker. Optimal filtration of square-integrable signals in Gaussian noise. Probl. Peredachi Inf, 16(2):52-68, 1980.
    • (1980) Probl. Peredachi Inf , vol.16 , Issue.2 , pp. 52-68
    • Pinsker, M.S.1
  • 38
    • 77955137685 scopus 로고    scopus 로고
    • Linear and convex aggregation of density estimators
    • Ph. Rigollet and A. B. Tsybakov. Linear and convex aggregation of density estimators. Math. Methods Statist., 16(3):260-280, 2007.
    • (2007) Math. Methods Statist. , vol.16 , Issue.3 , pp. 260-280
    • Rigollet, Ph.1    Tsybakov, A.B.2
  • 39
    • 79952982333 scopus 로고    scopus 로고
    • Exponential screening and optimal rates of sparse estimation
    • Ph. Rigollet and A. B. Tsybakov. Exponential screening and optimal rates of sparse estimation. Ann. Statist., 39(2):731-471, 2011.
    • (2011) Ann. Statist. , vol.39 , Issue.2 , pp. 731-1471
    • Rigollet, Ph.1    Tsybakov, A.B.2
  • 40
    • 77951942144 scopus 로고    scopus 로고
    • NL-Means and aggregation procedures
    • J. Salmon and E. Le Pennec. NL-Means and aggregation procedures. In ICIP, pages 2977-2980, 2009.
    • (2009) ICIP , pp. 2977-2980
    • Salmon, J.1    Le Pennec, E.2
  • 42
    • 0000169918 scopus 로고
    • Estimation of the mean of a multivariate normal distribution
    • C. M. Stein. Estimation of the mean of a multivariate normal distribution. Ann. Statist., 9(6): 1135-1151, 1981.
    • (1981) Ann. Statist. , vol.9 , Issue.6 , pp. 1135-1151
    • Stein, C.M.1
  • 43
    • 9444226947 scopus 로고    scopus 로고
    • Optimal rates of aggregation
    • A. B. Tsybakov. Optimal rates of aggregation. In COLT, pages 303-313, 2003.
    • (2003) COLT , pp. 303-313
    • Tsybakov, A.B.1
  • 45
    • 0004599527 scopus 로고    scopus 로고
    • Combining different procedures for adaptive regression
    • Y. Yang. Combining different procedures for adaptive regression. J. Multivariate Anal., 74(1): 135-161, 2000.
    • (2000) J. Multivariate Anal. , vol.74 , Issue.1 , pp. 135-161
    • Yang, Y.1
  • 46
    • 0141573227 scopus 로고    scopus 로고
    • Regression with multiple candidate models: Selecting or mixing?
    • Y. Yang. Regression with multiple candidate models: selecting or mixing? Statist. Sinica, 13(3): 783-809, 2003. (Pubitemid 37155854)
    • (2003) Statistica Sinica , vol.13 , Issue.3 , pp. 783-809
    • Yang, Y.1
  • 47
    • 29144460670 scopus 로고    scopus 로고
    • Aggregating regression procedures to improve performance
    • DOI 10.3150/bj/1077544602
    • Y. Yang. Aggregating regression procedures to improve performance. Bernoulli, 10(l):25-47, 2004. (Pubitemid 44242782)
    • (2004) Bernoulli , vol.10 , Issue.1 , pp. 25-47
    • Yang, Y.1
  • 49
    • 33645722194 scopus 로고    scopus 로고
    • Information-theoretic upper and lower bounds for statistical estimation
    • ISSN 1557-9654
    • T. Zhang. Information-theoretic upper and lower bounds for statistical estimation. IEEE Trans. Inform. Theory, 52(4):1307-1321, 2006. ISSN 1557-9654.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.4 , pp. 1307-1321
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.