메뉴 건너뛰기




Volumn 40, Issue 2, 2012, Pages 639-665

Kullback-leibler aggregation and misspecified generalized linear models1

Author keywords

Aggregation; Classification; Finite sample bounds; Generalized linear models; Logistic regression; Minimax lower bounds; Oracle inequalities; Regression

Indexed keywords


EID: 84866861743     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/11-AOS961     Document Type: Article
Times cited : (70)

References (43)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Akad. Kiadó, Budapest. Mr0483125
    • Akaike, H. (1973). information Theory and An Extension of The Maximum Likelihood Principle. in Second international Symposium on information Theory (Tsahkadsor, 1971) 267-281. Akad. Kiadó, Budapest. Mr0483125
    • (1973) Second international Symposium on information Theory (Tsahkadsor, 1971) , pp. 267-281
    • Akaike, H.1
  • 2
    • 79960999147 scopus 로고    scopus 로고
    • Pac-bayesian bounds for sparse regression estimation with exponential weights
    • Mr2786484
    • Alquier, P. and Lounici, K. (2011). Pac-Bayesian Bounds for Sparse Regression Estimation with Exponential Weights. Electron. J. Stat. 5 127-145. Mr2786484
    • (2011) Electron. J. Stat. , Issue.5 , pp. 127-145
    • Alquier, P.1    Lounici, K.2
  • 3
    • 85161973198 scopus 로고    scopus 로고
    • Progressive mixture rules are deviation suboptimal
    • (Y. S. J. Platt D. Koller and S. Roweis, Eds.) Mit Press, Cambridge, Ma
    • Audibert, J. Y. (2008). Progressive Mixture Rules are Deviation Suboptimal. in Advances in Neural information Processing Systems 20 (Y. S. J. Platt D. Koller and S. Roweis, Eds.) 41-48. Mit Press, Cambridge, Ma.
    • (2008) Advances in Neural information Processing Systems , vol.20 , pp. 41-48
    • Audibert, J.Y.1
  • 5
  • 6
    • 50449086446 scopus 로고    scopus 로고
    • Spatial aggregation of local likelihood estimates with applications to classification
    • Mr2363972
    • Belomestny, D. and Spokoiny, V. (2007). Spatial Aggregation of Local Likelihood Estimates with Applications to Classification. Ann. Statist. 35 2287-2311. Mr2363972
    • (2007) Ann. Statist. , vol.35 , pp. 2287-2311
    • Belomestny, D.1    Spokoiny, V.2
  • 7
    • 84924053271 scopus 로고    scopus 로고
    • Theory of classification: A survey of some recent advances
    • Mr2182250
    • Boucheron, S., Bousquet, O. and Lugosi, G. (2005). Theory of Classification: A Survey of Some Recent Advances. Esaim Probab. Stat. 9 323-375. Mr2182250
    • (2005) Esaim Probab. Stat. , vol.9 , pp. 323-375
    • Boucheron, S.1    Bousquet, O.2    Lugosi, G.3
  • 8
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman, L. (1999). Prediction Games and Arcing Algorithms. Neural Comput. 11 1493-1517.
    • (1999) Neural Comput. , vol.11 , pp. 1493-1517
    • Breiman, L.1
  • 10
    • 38049043619 scopus 로고    scopus 로고
    • Aggregation for gaussian regression
    • Mr2351101
    • Bunea, F., Tsybakov, A. B. andwegkamp, M. H. (2007). Aggregation for Gaussian Regression. Ann. Statist. 35 1674-1697. Mr2351101
    • (2007) Ann. Statist. , Issue.35 , pp. 1674-1697
    • Bunea, F.1    Tsybakov, A.B.2    Wegkamp, M.3
  • 11
    • 33646360369 scopus 로고    scopus 로고
    • Statistical learning theory and stochastic optimization
    • Springer, Berlin. Lecture Notes From The 31St Summer School on Probability Theory Held in Saint-Flour, July 8-25, 2001. Mr2163920
    • Catoni, O. (2004). Statistical Learning Theory and Stochastic Optimization. Lecture Notes in Math. 1851. Springer, Berlin. Lecture Notes From The 31St Summer School on Probability Theory Held in Saint-Flour, July 8-25, 2001. Mr2163920
    • (2004) Lecture Notes in Math. , vol.1851
    • Catoni, O.1
  • 13
    • 38049046503 scopus 로고    scopus 로고
    • Aggregation by exponential weighting and sharp oracle inequalities
    • Springer, Berlin. Mr2397581
    • Dalalyan, A. S. and Tsybakov, A. B. (2007). Aggregation By Exponential Weighting and Sharp Oracle inequalities. in Learning Theory. Lecture Notes in Computer Science 4539 97-111. Springer, Berlin. Mr2397581
    • (2007) Learning Theory. Lecture Notes in Computer Science , vol.4539 , pp. 97-111
    • Dalalyan, A.S.1    Tsybakov, A.B.2
  • 14
    • 0002125350 scopus 로고    scopus 로고
    • Convex analysis and variational problems
    • Siam, Philadelphia, Pa. Mr1727362
    • Ekeland, I. and TéMam, R. (1999). Convex Analysis and Variational Problems. Classics in Applied Mathematics 28. Siam, Philadelphia, Pa. Mr1727362
    • (1999) Classics in Applied Mathematics , vol.28
    • Ekeland, I.1    TéMam, R.2
  • 15
    • 0001241028 scopus 로고
    • Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models
    • Mr0773172
    • Fahrmeir, L. andkaufmann, H. (1985). Consistency and Asymptotic Normality of The Maximum Likelihood Estimator in Generalized Linear Models. Ann. Statist. 13 342-368. Mr0773172
    • (1985) Ann. Statist. , vol.13 , pp. 342-368
    • Fahrmeir, L.1    Kaufmann, H.2
  • 17
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion
    • Mr1790002
    • Friedman, J., Hastie, T. and Tibshirani, R. (2000). Additive Logistic Regression: A Statistical View of Boosting (with Discussion). Ann. Statist. 28 337-407. Mr1790002
    • (2000) Ann. Statist. , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 18
    • 33845612972 scopus 로고    scopus 로고
    • Best subset selection, persistence in high-dimensional statistical learning and optimization under l1 constraint
    • Mr2291503
    • Greenshtein, E. (2006). Best Subset Selection, Persistence in High-Dimensional Statistical Learning and Optimization Under L1 Constraint. Ann. Statist. 34 2367-2386. Mr2291503
    • (2006) Ann. Statist. , vol.34 , pp. 2367-2386
    • Greenshtein, E.1
  • 19
    • 31344454903 scopus 로고    scopus 로고
    • Persistence in high-dimensional linear predictor selection and the virtue of overparametrization
    • Mr2108039
    • Greenshtein, E. and Ritov, Y. (2004). Persistence in High-Dimensional Linear Predictor Selection and The Virtue of Overparametrization. Bernoulli 10 971-988. Mr2108039
    • (2004) Bernoulli , vol.10 , pp. 971-988
    • Greenshtein, E.1    Ritov, Y.2
  • 20
    • 0034362823 scopus 로고    scopus 로고
    • Functional aggregation for nonparametric regression
    • Mr1792783
    • Juditsky, A. and Nemirovski, A. (2000). Functional Aggregation for Nonparametric Regression. Ann. Statist. 28 681-712. Mr1792783
    • (2000) Ann. Statist. , vol.28 , pp. 681-712
    • Juditsky, A.1    Nemirovski, A.2
  • 21
    • 54349121305 scopus 로고    scopus 로고
    • Learning by mirror averaging
    • Mr2458184
    • Juditsky, A., Rigollet, P. and Tsybakov, A. B. (2008). Learning By Mirror Averaging. Ann. Statist. 36 2183-2206. Mr2458184
    • (2008) Ann. Statist. , vol.36 , pp. 2183-2206
    • Juditsky, A.1    Rigollet, P.2    Tsybakov, A.B.3
  • 22
    • 84862009119 scopus 로고    scopus 로고
    • Oracle inequalities in empirical risk minimization and sparse recovery problems
    • Springer, Heidelberg. Mr2829871
    • Koltchinskii, V. (2011). Oracle inequalities in Empirical Risk Minimization and Sparse Recovery Problems. Lecture Notes in Math. 2033. Springer, Heidelberg. Mr2829871
    • (2011) Lecture Notes in Math. , pp. 2033
    • Koltchinskii, V.1
  • 23
    • 0000678581 scopus 로고
    • On some asymptotic properties of maximum likelihood estimates and related bayes' estimates
    • Mr0054913
    • Lecam, L. (1953). on Some Asymptotic Properties of Maximum Likelihood Estimates and Related Bayes' Estimates. Univ. California Publ. Statist. 1 277-329. Mr0054913
    • (1953) Univ. California Publ. Statist. , vol.1 , pp. 277-329
    • Lecam, L.1
  • 24
    • 48849097549 scopus 로고    scopus 로고
    • Simultaneous adaptation to the margin and to complexity in classification
    • Mr2351102
    • Lecué, G. (2007). Simultaneous Adaptation to The Margin and to Complexity in Classification. Ann. Statist. 35 1698-1721. Mr2351102
    • (2007) Ann. Statist. , vol.35 , pp. 1698-1721
    • Lecué, G.1
  • 25
    • 84871594826 scopus 로고    scopus 로고
    • Empirical risk minimization is optimal for the convex aggregation problem
    • to Appear
    • Lecué, G. (2012). Empirical Risk Minimization Is Optimal for The Convex Aggregation Problem. Bernoulli. to Appear.
    • (2012) Bernoulli
    • Lecué, G.1
  • 26
    • 70350012166 scopus 로고    scopus 로고
    • Aggregation via empirical risk minimization
    • Mr2529440
    • Lecué, G. and Mendelson, S. (2009). Aggregation Via Empirical Risk Minimization. Probab. Theory Related Fields 145 591-613. Mr2529440
    • (2009) Probab. Theory Related Fields , vol.145 , pp. 591-613
    • Lecué, G.1    Mendelson, S.2
  • 28
    • 79952905234 scopus 로고    scopus 로고
    • Generalized mirror averaging and d-convex aggregation
    • Mr2356820
    • Lounici, K. (2007). Generalized Mirror Averaging and D-Convex Aggregation. Math. Methods Statist. 16 246-259. Mr2356820
    • (2007) Math. Methods Statist. , vol.16 , pp. 246-259
    • Lounici, K.1
  • 29
    • 34247553430 scopus 로고    scopus 로고
    • Concentration inequalities and model selection
    • Springer, Berlin. Mr2319879
    • Massart, P. (2007). Concentration inequalities and Model Selection. Lecture Notes in Math. 1896. Springer, Berlin. Mr2319879
    • (2007) Lecture Notes in Math. , vol.1896
    • Massart, P.1
  • 31
    • 41549131613 scopus 로고    scopus 로고
    • Evidence contrary to the statistical view of boosting
    • Mease, D. andwyner, A. (2008). Evidence Contrary to The Statistical View of Boosting. J. Mach. Learn. Res. 9 131-156.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 131-156
    • Mease, D.1    Wyner, A.2
  • 32
    • 84872048619 scopus 로고    scopus 로고
    • General oracle inequalities for model selection
    • Mr2485876
    • Mitchell, C. and Van De Geer, S. (2009). General Oracle inequalities for Model Selection. Electron. J. Stat. 3 176-204. Mr2485876
    • (2009) Electron. J. Stat. , vol.3 , pp. 176-204
    • Mitchell, C.1    Van De Geer, S.2
  • 34
    • 70450197241 scopus 로고    scopus 로고
    • Robust stochastic approximation approach to stochastic programming
    • Mr2486041
    • Nemirovski, A., Juditsky, A., Lan, G. and Shapiro, A. (2008). Robust Stochastic Approximation Approach to Stochastic Programming. Siam J. Optim. 19 1574-1609. Mr2486041
    • (2008) Siam J. Optim. , vol.19 , pp. 1574-1609
    • Nemirovski, A.1    Juditsky, A.2    Lan, G.3    Shapiro, A.4
  • 35
    • 80053974183 scopus 로고    scopus 로고
    • Minimax rates of estimation for high-dimensional linear regression over q -balls
    • Mr2882274
    • Raskutti, G., Wainwright, M. J. and Yu, B. (2011). Minimax Rates of Estimation for High-Dimensional Linear Regression Over Q -Balls. Ieee Trans. inform. Theory 57 6976-6994. Mr2882274
    • (2011) Ieee Trans. inform. Theory , vol.57 , pp. 6976-6994
    • Raskutti, G.1    Wainwright, M.J.2    Yu, B.3
  • 37
    • 77955137685 scopus 로고    scopus 로고
    • Linear and convex aggregation of density estimators
    • Mr2356821
    • Rigollet, P. and Tsybakov, A. B. (2007). Linear and Convex Aggregation of Density Estimators. Math. Methods Statist. 16 260-280. Mr2356821
    • (2007) Math. Methods Statist. , vol.16 , pp. 260-280
    • Rigollet, P.1    Tsybakov, A.B.2
  • 38
    • 79952982333 scopus 로고    scopus 로고
    • Exponential screening and optimal rates of sparse estimation
    • Mr2816337
    • Rigollet, P. and Tsybakov, A. (2011). Exponential Screening and Optimal Rates of Sparse Estimation. Ann. Statist. 39 731-771. Mr2816337
    • (2011) Ann. Statist. , Issue.39 , pp. 731-771
    • Rigollet, P.1    Tsybakov, A.2
  • 39
    • 84871564349 scopus 로고    scopus 로고
    • Sparse estimation by exponential weighting
    • to Appear
    • Rigollet, P. and Tsybakov, A. (2012). Sparse Estimation By Exponential Weighting. Statist. Sci. to Appear.
    • (2012) Statist. Sci.
    • Rigollet, P.1    Tsybakov, A.2
  • 40
    • 9444226947 scopus 로고    scopus 로고
    • Optimal rates of aggregation
    • (B. SchöLkopf andm. K.Warmuth, Eds.). Lecture Notes in Computer Science Springer, Berlin
    • Tsybakov, A. B. (2003). Optimal Rates of Aggregation. in Colt (B. SchöLkopf andm. K.Warmuth, Eds.). Lecture Notes in Computer Science 2777 303-313. Springer, Berlin.
    • (2003) Colt , vol.2777 , pp. 303-313
    • Tsybakov, A.B.1
  • 41
    • 0002644952 scopus 로고
    • Maximum likelihood estimation of misspecified models
    • Mr0640163
    • White, H. (1982). Maximum Likelihood Estimation of Misspecified Models. Econometrica 50 1-25. Mr0640163
    • (1982) Econometrica , vol.50 , pp. 1-25
    • White, H.1
  • 42
    • 0034410225 scopus 로고    scopus 로고
    • Mixing strategies for density estimation
    • Mr1762904
    • Yang, Y. (2000). Mixing Strategies for Density Estimation. Ann. Statist. 28 75-87. Mr1762904
    • (2000) Ann. Statist. , vol.28 , pp. 75-87
    • Yang, Y.1
  • 43
    • 29144460670 scopus 로고    scopus 로고
    • Aggregating regression procedures to improve performance
    • Mr2044592
    • Yang, Y. (2004). Aggregating Regression Procedures to Improve Performance. Bernoulli 10 25-47. Mr2044592
    • (2004) Bernoulli , vol.10 , pp. 25-47
    • Yang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.