-
1
-
-
32344450824
-
Genomic DNA methylation: the mark and its mediators
-
Klose R.J., Bird A.P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 2006, 31:89-97.
-
(2006)
Trends Biochem. Sci.
, vol.31
, pp. 89-97
-
-
Klose, R.J.1
Bird, A.P.2
-
2
-
-
84874194072
-
DNA methylation: roles in mammalian development
-
Smith Z.D., Meissner A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 2013, 14:204-220.
-
(2013)
Nat. Rev. Genet.
, vol.14
, pp. 204-220
-
-
Smith, Z.D.1
Meissner, A.2
-
3
-
-
80053144962
-
A decade of exploring the cancer epigenome - biological and translational implications
-
Baylin S.B., Jones P.A. A decade of exploring the cancer epigenome - biological and translational implications. Nat. Rev. Cancer 2011, 11:726-734.
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 726-734
-
-
Baylin, S.B.1
Jones, P.A.2
-
4
-
-
77956095231
-
Active DNA demethylation: many roads lead to Rome
-
Wu S.C., Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat. Rev. Mol. Cell Biol. 2010, 11:607-620.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 607-620
-
-
Wu, S.C.1
Zhang, Y.2
-
5
-
-
80052933429
-
DNA demethylation dynamics
-
Bhutani N., et al. DNA demethylation dynamics. Cell 2011, 146:866-872.
-
(2011)
Cell
, vol.146
, pp. 866-872
-
-
Bhutani, N.1
-
6
-
-
66149123748
-
The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
-
Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324:929-930.
-
(2009)
Science
, vol.324
, pp. 929-930
-
-
Kriaucionis, S.1
Heintz, N.2
-
7
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935.
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
-
8
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito S., et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333:1300-1303.
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
-
9
-
-
80052495940
-
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
-
He Y.F., et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333:1303-1307.
-
(2011)
Science
, vol.333
, pp. 1303-1307
-
-
He, Y.F.1
-
10
-
-
79952713567
-
5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming
-
Wossidlo M., et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nat. Commun. 2011, 2:241.
-
(2011)
Nat. Commun.
, vol.2
, pp. 241
-
-
Wossidlo, M.1
-
11
-
-
79952763586
-
Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine
-
Iqbal K., et al. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3642-3647.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 3642-3647
-
-
Iqbal, K.1
-
12
-
-
80053348585
-
The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes
-
Gu T.P., et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 2011, 477:606-610.
-
(2011)
Nature
, vol.477
, pp. 606-610
-
-
Gu, T.P.1
-
13
-
-
82655187105
-
Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development
-
Inoue A., et al. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res. 2011, 21:1670-1676.
-
(2011)
Cell Res.
, vol.21
, pp. 1670-1676
-
-
Inoue, A.1
-
14
-
-
80054097425
-
Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos
-
Inoue A., Zhang Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 2011, 334:194.
-
(2011)
Science
, vol.334
, pp. 194
-
-
Inoue, A.1
Zhang, Y.2
-
15
-
-
84871702441
-
The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells
-
Seisenberger S., et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 2012, 48:849-862.
-
(2012)
Mol. Cell
, vol.48
, pp. 849-862
-
-
Seisenberger, S.1
-
16
-
-
84871438065
-
Tet1 controls meiosis by regulating meiotic gene expression
-
Yamaguchi S., et al. Tet1 controls meiosis by regulating meiotic gene expression. Nature 2012, 492:443-447.
-
(2012)
Nature
, vol.492
, pp. 443-447
-
-
Yamaguchi, S.1
-
17
-
-
84872770694
-
Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine
-
Hackett J.A., et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 2013, 339:448-452.
-
(2013)
Science
, vol.339
, pp. 448-452
-
-
Hackett, J.A.1
-
18
-
-
84875949201
-
Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells
-
Vincent J.J., et al. Stage-specific roles for tet1 and tet2 in DNA demethylation in primordial germ cells. Cell Stem Cell 2013, 12:470-478.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 470-478
-
-
Vincent, J.J.1
-
19
-
-
80053917872
-
Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites
-
Maiti A., Drohat A.C. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 2011, 286:35334-35338.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 35334-35338
-
-
Maiti, A.1
Drohat, A.C.2
-
20
-
-
84859002909
-
Parallel mechanisms of epigenetic reprogramming in the germline
-
Hackett J.A., et al. Parallel mechanisms of epigenetic reprogramming in the germline. Trends Genet. 2012, 28:164-174.
-
(2012)
Trends Genet.
, vol.28
, pp. 164-174
-
-
Hackett, J.A.1
-
21
-
-
84876343136
-
Functions of DNA methylation and hydroxymethylation in mammalian development
-
Guibert S., Weber M. Functions of DNA methylation and hydroxymethylation in mammalian development. Curr. Top. Dev. Biol. 2013, 104:47-83.
-
(2013)
Curr. Top. Dev. Biol.
, vol.104
, pp. 47-83
-
-
Guibert, S.1
Weber, M.2
-
22
-
-
79955538247
-
Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain
-
Guo J.U., et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011, 145:423-434.
-
(2011)
Cell
, vol.145
, pp. 423-434
-
-
Guo, J.U.1
-
23
-
-
84862681459
-
Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing
-
Schiesser S., et al. Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew. Chem. Int. Ed. Engl. 2012, 51:6516-6520.
-
(2012)
Angew. Chem. Int. Ed. Engl.
, vol.51
, pp. 6516-6520
-
-
Schiesser, S.1
-
24
-
-
84865061978
-
Genome-wide distribution of 5-formylcytosine in ES cells is associated with transcription and depends on thymine DNA glycosylase
-
Raiber E.A., et al. Genome-wide distribution of 5-formylcytosine in ES cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol. 2012, 13:R69.
-
(2012)
Genome Biol.
, vol.13
-
-
Raiber, E.A.1
-
25
-
-
84876907152
-
Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming
-
Song C.X., et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 2013, 153:678-691.
-
(2013)
Cell
, vol.153
, pp. 678-691
-
-
Song, C.X.1
-
26
-
-
84876946045
-
Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics
-
Shen L., et al. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 2013, 153:692-706.
-
(2013)
Cell
, vol.153
, pp. 692-706
-
-
Shen, L.1
-
27
-
-
73349104113
-
Active DNA demethylation mediated by DNA glycosylases
-
Zhu J.K. Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet. 2009, 43:143-166.
-
(2009)
Annu. Rev. Genet.
, vol.43
, pp. 143-166
-
-
Zhu, J.K.1
-
28
-
-
84863986133
-
Functions of DNA methylation: islands, start sites, gene bodies and beyond
-
Jones P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 2012, 13:484-492.
-
(2012)
Nat. Rev. Genet.
, vol.13
, pp. 484-492
-
-
Jones, P.A.1
-
29
-
-
84877930005
-
DNA methylation and methylcytosine oxidation in cell fate decisions
-
Koh K.P., Rao A. DNA methylation and methylcytosine oxidation in cell fate decisions. Curr. Opin. Cell Biol. 2013, 25:152-161.
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 152-161
-
-
Koh, K.P.1
Rao, A.2
-
30
-
-
84879235514
-
5-Hydroxymethylcytosine: generation, fate, and genomic distribution
-
Shen L., Zhang Y. 5-Hydroxymethylcytosine: generation, fate, and genomic distribution. Curr. Opin. Cell Biol. 2013, 25:289-296.
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 289-296
-
-
Shen, L.1
Zhang, Y.2
-
31
-
-
84355163093
-
DNA-binding factors shape the mouse methylome at distal regulatory regions
-
Stadler M.B., et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 2011, 480:490-495.
-
(2011)
Nature
, vol.480
, pp. 490-495
-
-
Stadler, M.B.1
-
32
-
-
84861990517
-
Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome
-
Yu M., et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 2012, 149:1368-1380.
-
(2012)
Cell
, vol.149
, pp. 1368-1380
-
-
Yu, M.1
-
33
-
-
84869392308
-
Mapping recently identified nucleotide variants in the genome and transcriptome
-
Song C.X., et al. Mapping recently identified nucleotide variants in the genome and transcriptome. Nat. Biotechnol. 2012, 30:1107-1116.
-
(2012)
Nat. Biotechnol.
, vol.30
, pp. 1107-1116
-
-
Song, C.X.1
-
34
-
-
78651280460
-
Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine
-
Song C.X., et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 2011, 29:68-72.
-
(2011)
Nat. Biotechnol.
, vol.29
, pp. 68-72
-
-
Song, C.X.1
-
35
-
-
84871563384
-
MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system
-
Mellen M., et al. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 2012, 151:1417-1430.
-
(2012)
Cell
, vol.151
, pp. 1417-1430
-
-
Mellen, M.1
-
36
-
-
82255192294
-
5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging
-
Szulwach K.E., et al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat. Neurosci. 2011, 14:1607-1616.
-
(2011)
Nat. Neurosci.
, vol.14
, pp. 1607-1616
-
-
Szulwach, K.E.1
-
37
-
-
84874252793
-
Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis
-
Hahn M.A., et al. Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep. 2013, 3:291-300.
-
(2013)
Cell Rep.
, vol.3
, pp. 291-300
-
-
Hahn, M.A.1
-
38
-
-
84875923762
-
Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming
-
Gao Y., et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 2013, 12:453-469.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 453-469
-
-
Gao, Y.1
-
39
-
-
84255200412
-
5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations
-
Jin S-G., et al. 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res. 2011, 71:7360-7365.
-
(2011)
Cancer Res.
, vol.71
, pp. 7360-7365
-
-
Jin, S.-G.1
-
40
-
-
84865486793
-
Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2
-
Doege C.A., et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 2012, 488:652-655.
-
(2012)
Nature
, vol.488
, pp. 652-655
-
-
Doege, C.A.1
-
41
-
-
84875370281
-
NANOG-dependent function of TET1 and TET2 in establishment of pluripotency
-
Costa Y., et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 2013, 495:370-374.
-
(2013)
Nature
, vol.495
, pp. 370-374
-
-
Costa, Y.1
-
42
-
-
84875783959
-
Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion
-
Piccolo F.M., et al. Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion. Mol. Cell 2013, 49:1023-1033.
-
(2013)
Mol. Cell
, vol.49
, pp. 1023-1033
-
-
Piccolo, F.M.1
-
43
-
-
84875165863
-
Epigenetic programming and reprogramming during development
-
Cantone I., Fisher A.G. Epigenetic programming and reprogramming during development. Nat. Struct. Mol. Biol. 2013, 20:282-289.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 282-289
-
-
Cantone, I.1
Fisher, A.G.2
-
44
-
-
84455167621
-
Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells
-
Yildirim O., et al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 2011, 147:1498-1510.
-
(2011)
Cell
, vol.147
, pp. 1498-1510
-
-
Yildirim, O.1
-
45
-
-
84874771985
-
Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives
-
Spruijt C.G., et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 2013, 152:1146-1159.
-
(2013)
Cell
, vol.152
, pp. 1146-1159
-
-
Spruijt, C.G.1
-
46
-
-
79960626636
-
The discovery of 5-formylcytosine in embryonic stem cell DNA
-
Pfaffeneder T., et al. The discovery of 5-formylcytosine in embryonic stem cell DNA. Angew. Chem. Int. Ed. Engl. 2011, 50:7008-7012.
-
(2011)
Angew. Chem. Int. Ed. Engl.
, vol.50
, pp. 7008-7012
-
-
Pfaffeneder, T.1
-
47
-
-
84861221693
-
Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution
-
Booth M.J., et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 2012, 336:934-937.
-
(2012)
Science
, vol.336
, pp. 934-937
-
-
Booth, M.J.1
-
48
-
-
79956302047
-
TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity
-
Williams K., et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 2011, 473:343-348.
-
(2011)
Nature
, vol.473
, pp. 343-348
-
-
Williams, K.1
-
49
-
-
79956292024
-
Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells
-
Wu H., et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 2011, 473:389-393.
-
(2011)
Nature
, vol.473
, pp. 389-393
-
-
Wu, H.1
-
50
-
-
84877313438
-
Selective chemical labelling of 5-formylcytosine in DNA by fluorescent dyes
-
Hu J., et al. Selective chemical labelling of 5-formylcytosine in DNA by fluorescent dyes. Chemistry 2013, 19:5836-5840.
-
(2013)
Chemistry
, vol.19
, pp. 5836-5840
-
-
Hu, J.1
-
51
-
-
84864722177
-
5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription
-
Kellinger M.W., et al. 5-formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 2012, 19:831-833.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 831-833
-
-
Kellinger, M.W.1
-
52
-
-
79961215084
-
Life and death of transcriptional co-activator p300
-
Chen J., Li Q. Life and death of transcriptional co-activator p300. Epigenetics 2011, 6:957-961.
-
(2011)
Epigenetics
, vol.6
, pp. 957-961
-
-
Chen, J.1
Li, Q.2
|