메뉴 건너뛰기




Volumn 29, Issue 10, 2013, Pages 561-568

The role of gene conversion in preserving rearrangement hotspots in the human genome

Author keywords

Copy number variant; Gene conversion; Non allelic homologous recombination; Rearrangement hotspot; Segmental duplication

Indexed keywords

COPY NUMBER VARIATION; GENE CONVERSION; GENE REARRANGEMENT; HOMOLOGOUS RECOMBINATION; HUMAN; HUMAN GENOME; LIFESPAN; NON ALLELIC HOMOLOGOUS RECOMBINATION; NONHUMAN; PRIORITY JOURNAL; REVIEW; SEGMENTAL DUPLICATION;

EID: 84884417635     PISSN: 01689525     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tig.2013.07.002     Document Type: Review
Times cited : (14)

References (74)
  • 1
    • 33845746387 scopus 로고    scopus 로고
    • An evolutionary view of human recombination
    • Coop G., Przeworski M. An evolutionary view of human recombination. Nat. Rev. Genet. 2007, 8:23-34.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 23-34
    • Coop, G.1    Przeworski, M.2
  • 2
    • 84857441787 scopus 로고    scopus 로고
    • Direct and indirect consequences of meiotic recombination: implications for genome evolution
    • Webster M.T., Hurst L.D. Direct and indirect consequences of meiotic recombination: implications for genome evolution. Trends Genet. 2012, 28:101-109.
    • (2012) Trends Genet. , vol.28 , pp. 101-109
    • Webster, M.T.1    Hurst, L.D.2
  • 3
    • 26844482093 scopus 로고    scopus 로고
    • A fine-scale map of recombination rates and hotspots across the human genome
    • Myers S., et al. A fine-scale map of recombination rates and hotspots across the human genome. Science 2005, 310:321-324.
    • (2005) Science , vol.310 , pp. 321-324
    • Myers, S.1
  • 4
    • 16844377748 scopus 로고    scopus 로고
    • Fine-scale recombination patterns differ between chimpanzees and humans
    • Ptak S.E., et al. Fine-scale recombination patterns differ between chimpanzees and humans. Nat. Genet. 2005, 37:429-434.
    • (2005) Nat. Genet. , vol.37 , pp. 429-434
    • Ptak, S.E.1
  • 5
    • 50449088155 scopus 로고    scopus 로고
    • A common sequence motif associated with recombination hot spots and genome instability in humans
    • Myers S., et al. A common sequence motif associated with recombination hot spots and genome instability in humans. Nat. Genet. 2008, 40:1124-1129.
    • (2008) Nat. Genet. , vol.40 , pp. 1124-1129
    • Myers, S.1
  • 6
    • 20144387806 scopus 로고    scopus 로고
    • Comparison of fine-scale recombination rates in humans and chimpanzees
    • Winckler W., et al. Comparison of fine-scale recombination rates in humans and chimpanzees. Science 2005, 308:107-111.
    • (2005) Science , vol.308 , pp. 107-111
    • Winckler, W.1
  • 7
    • 84859636918 scopus 로고    scopus 로고
    • A fine-scale chimpanzee genetic map from population sequencing
    • Auton A., et al. A fine-scale chimpanzee genetic map from population sequencing. Science 2012, 336:193-198.
    • (2012) Science , vol.336 , pp. 193-198
    • Auton, A.1
  • 8
    • 79955095683 scopus 로고    scopus 로고
    • What are the genomic drivers of the rapid evolution of PRDM9?
    • Ponting C.P. What are the genomic drivers of the rapid evolution of PRDM9?. Trends Genet. 2011, 27:165-171.
    • (2011) Trends Genet. , vol.27 , pp. 165-171
    • Ponting, C.P.1
  • 9
    • 76749170346 scopus 로고    scopus 로고
    • PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice
    • Baudat F., et al. PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 2010, 327:836-840.
    • (2010) Science , vol.327 , pp. 836-840
    • Baudat, F.1
  • 10
    • 76749155072 scopus 로고    scopus 로고
    • Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination
    • Myers S., et al. Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 2010, 327:876-879.
    • (2010) Science , vol.327 , pp. 876-879
    • Myers, S.1
  • 11
    • 76749151934 scopus 로고    scopus 로고
    • Prdm9 controls activation of mammalian recombination hotspots
    • Parvanov E.D., et al. Prdm9 controls activation of mammalian recombination hotspots. Science 2010, 327:835.
    • (2010) Science , vol.327 , pp. 835
    • Parvanov, E.D.1
  • 12
    • 55549143682 scopus 로고    scopus 로고
    • Copy number variation and evolution in humans and chimpanzees
    • Perry G.H., et al. Copy number variation and evolution in humans and chimpanzees. Genome Res. 2008, 18:1698-1710.
    • (2008) Genome Res. , vol.18 , pp. 1698-1710
    • Perry, G.H.1
  • 13
    • 41849091509 scopus 로고    scopus 로고
    • Analysis of copy number variation in the rhesus macaque genome identifies candidate loci for evolutionary and human disease studies
    • Lee A.S., et al. Analysis of copy number variation in the rhesus macaque genome identifies candidate loci for evolutionary and human disease studies. Hum. Mol. Genet. 2008, 17:1127-1136.
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 1127-1136
    • Lee, A.S.1
  • 14
    • 80053542924 scopus 로고    scopus 로고
    • Copy number variation analysis in the great apes reveals species-specific patterns of structural variation
    • Gazave E., et al. Copy number variation analysis in the great apes reveals species-specific patterns of structural variation. Genome Res. 2011, 21:1626-1639.
    • (2011) Genome Res. , vol.21 , pp. 1626-1639
    • Gazave, E.1
  • 15
    • 79957639498 scopus 로고    scopus 로고
    • Refinement of primate copy number variation hotspots identifies candidate genomic regions evolving under positive selection
    • Gokcumen O., et al. Refinement of primate copy number variation hotspots identifies candidate genomic regions evolving under positive selection. Genome Biol. 2011, 12:R52.
    • (2011) Genome Biol. , vol.12
    • Gokcumen, O.1
  • 16
    • 77951700086 scopus 로고    scopus 로고
    • Mutation spectrum revealed by breakpoint sequencing of human germline CNVs
    • Conrad D.F., et al. Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nat. Genet. 2010, 42:385-391.
    • (2010) Nat. Genet. , vol.42 , pp. 385-391
    • Conrad, D.F.1
  • 17
    • 84862491113 scopus 로고    scopus 로고
    • Mechanisms for recurrent and complex human genomic rearrangements
    • Liu P., et al. Mechanisms for recurrent and complex human genomic rearrangements. Curr. Opin. Genet. Dev. 2012, 22:211-220.
    • (2012) Curr. Opin. Genet. Dev. , vol.22 , pp. 211-220
    • Liu, P.1
  • 18
    • 58149172086 scopus 로고    scopus 로고
    • Ensuring the fidelity of recombination in mammalian chromosomes
    • Waldman A.S. Ensuring the fidelity of recombination in mammalian chromosomes. Bioessays 2008, 30:1163-1171.
    • (2008) Bioessays , vol.30 , pp. 1163-1171
    • Waldman, A.S.1
  • 19
    • 80053908833 scopus 로고    scopus 로고
    • Frequency of nonallelic homologous recombination is correlated with length of homology: evidence that ectopic synapsis precedes ectopic crossing-over
    • Liu P., et al. Frequency of nonallelic homologous recombination is correlated with length of homology: evidence that ectopic synapsis precedes ectopic crossing-over. Am. J. Hum. Genet. 2011, 89:580-588.
    • (2011) Am. J. Hum. Genet. , vol.89 , pp. 580-588
    • Liu, P.1
  • 20
    • 0027231111 scopus 로고
    • Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae
    • Jinks-Robertson S., et al. Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 1993, 13:3937-3950.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 3937-3950
    • Jinks-Robertson, S.1
  • 21
    • 0031972093 scopus 로고    scopus 로고
    • Human meiotic recombination products revealed by sequencing a hotspot for homologous strand exchange in multiple HNPP deletion patients
    • Reiter L.T., et al. Human meiotic recombination products revealed by sequencing a hotspot for homologous strand exchange in multiple HNPP deletion patients. Am. J. Hum. Genet. 1998, 62:1023-1033.
    • (1998) Am. J. Hum. Genet. , vol.62 , pp. 1023-1033
    • Reiter, L.T.1
  • 22
    • 78649457819 scopus 로고    scopus 로고
    • Comparative genomics reveals birth and death of fragile regions in mammalian evolution
    • Alekseyev M.A., Pevzner P.A. Comparative genomics reveals birth and death of fragile regions in mammalian evolution. Genome Biol. 2010, 11:R117.
    • (2010) Genome Biol. , vol.11
    • Alekseyev, M.A.1    Pevzner, P.A.2
  • 23
    • 8844244033 scopus 로고    scopus 로고
    • Very low gene duplication rate in the yeast genome
    • Gao L-Z., Innan H. Very low gene duplication rate in the yeast genome. Science 2004, 306:1367-1370.
    • (2004) Science , vol.306 , pp. 1367-1370
    • Gao, L.-Z.1    Innan, H.2
  • 24
    • 79952094336 scopus 로고    scopus 로고
    • Gene conversion in human genetic disease
    • Chen J-M., et al. Gene conversion in human genetic disease. Genes 2011, 1:550-663.
    • (2011) Genes , vol.1 , pp. 550-663
    • Chen, J.-M.1
  • 25
    • 8444223551 scopus 로고    scopus 로고
    • Origins of chromosomal rearrangement hotspots in the human genome: evidence from the AZFa deletion hotspots
    • Hurles M.E., et al. Origins of chromosomal rearrangement hotspots in the human genome: evidence from the AZFa deletion hotspots. Genome Biol. 2004, 5:R55.
    • (2004) Genome Biol. , vol.5
    • Hurles, M.E.1
  • 26
    • 14644420971 scopus 로고    scopus 로고
    • Gene conversion and evolution of Xq28 duplicons involved in recurring inversions causing severe hemophilia A
    • Bagnall R.D., et al. Gene conversion and evolution of Xq28 duplicons involved in recurring inversions causing severe hemophilia A. Genome Res. 2005, 15:214-223.
    • (2005) Genome Res. , vol.15 , pp. 214-223
    • Bagnall, R.D.1
  • 27
    • 36749059019 scopus 로고    scopus 로고
    • A recurrent inversion on the eutherian X chromosome
    • Cáceres M., et al. A recurrent inversion on the eutherian X chromosome. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:18571-18576.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 18571-18576
    • Cáceres, M.1
  • 28
    • 50449104624 scopus 로고    scopus 로고
    • Evolutionary toggling of the MAPT 17q21.31 inversion region
    • Zody M.C., et al. Evolutionary toggling of the MAPT 17q21.31 inversion region. Nat. Genet. 2008, 40:1076-1083.
    • (2008) Nat. Genet. , vol.40 , pp. 1076-1083
    • Zody, M.C.1
  • 29
    • 77950461601 scopus 로고    scopus 로고
    • Origins and functional impact of copy number variation in the human genome
    • Conrad D.F., et al. Origins and functional impact of copy number variation in the human genome. Nature 2010, 464:704-712.
    • (2010) Nature , vol.464 , pp. 704-712
    • Conrad, D.F.1
  • 30
    • 77951719393 scopus 로고    scopus 로고
    • Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing
    • Park H., et al. Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing. Nat. Genet. 2010, 42:400-405.
    • (2010) Nat. Genet. , vol.42 , pp. 400-405
    • Park, H.1
  • 31
    • 0034831138 scopus 로고    scopus 로고
    • Segmental duplications: organization and impact within the current human genome project assembly
    • Bailey J.A., et al. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 2001, 11:1005-1017.
    • (2001) Genome Res. , vol.11 , pp. 1005-1017
    • Bailey, J.A.1
  • 32
    • 7244247384 scopus 로고    scopus 로고
    • Shotgun sequence assembly and recent segmental duplications within the human genome
    • She X., et al. Shotgun sequence assembly and recent segmental duplications within the human genome. Nature 2004, 431:927-930.
    • (2004) Nature , vol.431 , pp. 927-930
    • She, X.1
  • 33
    • 58149157901 scopus 로고    scopus 로고
    • Duplication and gene conversion in the Drosophila melanogaster genome
    • Osada N., Innan H. Duplication and gene conversion in the Drosophila melanogaster genome. PLoS Genet. 2008, 4:e1000305.
    • (2008) PLoS Genet. , vol.4
    • Osada, N.1    Innan, H.2
  • 34
    • 79953688257 scopus 로고    scopus 로고
    • Neutral and non-neutral evolution of duplicated genes with gene conversion
    • Fawcett J.A., Innan H. Neutral and non-neutral evolution of duplicated genes with gene conversion. Genes 2011, 2:191-209.
    • (2011) Genes , vol.2 , pp. 191-209
    • Fawcett, J.A.1    Innan, H.2
  • 35
    • 0036591666 scopus 로고    scopus 로고
    • Molecular-evolutionary mechanisms for genomic disorders
    • Stankiewicz P., Lupski J.R. Molecular-evolutionary mechanisms for genomic disorders. Curr. Opin. Genet. Dev. 2002, 12:312-319.
    • (2002) Curr. Opin. Genet. Dev. , vol.12 , pp. 312-319
    • Stankiewicz, P.1    Lupski, J.R.2
  • 36
    • 68649123353 scopus 로고    scopus 로고
    • Duplication hotspots, rare genomic disorders, and common disease
    • Mefford H.C., Eichler E.E. Duplication hotspots, rare genomic disorders, and common disease. Curr. Opin. Genet. Dev. 2009, 19:196-204.
    • (2009) Curr. Opin. Genet. Dev. , vol.19 , pp. 196-204
    • Mefford, H.C.1    Eichler, E.E.2
  • 37
    • 70349952394 scopus 로고    scopus 로고
    • The origins and impact of primate segmental duplications
    • Marques-Bonet T., et al. The origins and impact of primate segmental duplications. Trends Genet. 2009, 25:443-454.
    • (2009) Trends Genet. , vol.25 , pp. 443-454
    • Marques-Bonet, T.1
  • 38
    • 2442690342 scopus 로고    scopus 로고
    • Dynamics of a human interparalog gene conversion hotspot
    • Bosch E., et al. Dynamics of a human interparalog gene conversion hotspot. Genome Res. 2004, 14:835-844.
    • (2004) Genome Res. , vol.14 , pp. 835-844
    • Bosch, E.1
  • 39
    • 0036790813 scopus 로고    scopus 로고
    • The Chapel Hill hemophilia A dog colony exhibits a factor VIII gene inversion
    • Lozier J.N., et al. The Chapel Hill hemophilia A dog colony exhibits a factor VIII gene inversion. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:12991-12996.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 12991-12996
    • Lozier, J.N.1
  • 40
    • 0034713270 scopus 로고    scopus 로고
    • Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti
    • Smahi A., et al. Genomic rearrangement in NEMO impairs NF-κB activation and is a cause of incontinentia pigmenti. Nature 2000, 405:466-472.
    • (2000) Nature , vol.405 , pp. 466-472
    • Smahi, A.1
  • 41
    • 0034771886 scopus 로고    scopus 로고
    • A recurrent deletion in the ubiquitously expressed NEMO (IKK-Υ{hooked}) gene accounts for the vast majority of incontinentia pigmenti mutations
    • Aradhya S., et al. A recurrent deletion in the ubiquitously expressed NEMO (IKK-Υ{hooked}) gene accounts for the vast majority of incontinentia pigmenti mutations. Hum. Mol. Genet. 2001, 10:2171-2179.
    • (2001) Hum. Mol. Genet. , vol.10 , pp. 2171-2179
    • Aradhya, S.1
  • 42
    • 0032036374 scopus 로고    scopus 로고
    • Frequent gene conversion between human red and green opsin genes
    • Zhao Z., et al. Frequent gene conversion between human red and green opsin genes. J. Mol. Evol. 1998, 46:494-496.
    • (1998) J. Mol. Evol. , vol.46 , pp. 494-496
    • Zhao, Z.1
  • 43
    • 0033036631 scopus 로고    scopus 로고
    • Comparative mapping of the region of human chromosome 7 deleted in Williams syndrome
    • DeSilva U., et al. Comparative mapping of the region of human chromosome 7 deleted in Williams syndrome. Genome Res. 1999, 9:428-436.
    • (1999) Genome Res. , vol.9 , pp. 428-436
    • DeSilva, U.1
  • 44
    • 24344480878 scopus 로고    scopus 로고
    • Evolutionary mechanisms shaping the genomic structure of the Williams-Beuren syndrome chromosomal region at human 7q11.23
    • Antonell A., et al. Evolutionary mechanisms shaping the genomic structure of the Williams-Beuren syndrome chromosomal region at human 7q11.23. Genome Res. 2005, 15:1179-1188.
    • (2005) Genome Res. , vol.15 , pp. 1179-1188
    • Antonell, A.1
  • 45
    • 0036105179 scopus 로고    scopus 로고
    • Structure and evolution of the Smith-Magenis syndrome repeat gene clusters, SMS-REPs
    • Park S-S., et al. Structure and evolution of the Smith-Magenis syndrome repeat gene clusters, SMS-REPs. Genome Res. 2002, 12:729-738.
    • (2002) Genome Res. , vol.12 , pp. 729-738
    • Park, S.-S.1
  • 46
    • 3042661993 scopus 로고    scopus 로고
    • Genomic organization and evolution of the NF1 microdeletion region
    • De Raedt T., et al. Genomic organization and evolution of the NF1 microdeletion region. Genomics 2004, 84:346-360.
    • (2004) Genomics , vol.84 , pp. 346-360
    • De Raedt, T.1
  • 47
    • 0034161932 scopus 로고    scopus 로고
    • Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis
    • Shaikh T.H., et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum. Mol. Genet. 2000, 9:489-501.
    • (2000) Hum. Mol. Genet. , vol.9 , pp. 489-501
    • Shaikh, T.H.1
  • 48
    • 0036138187 scopus 로고    scopus 로고
    • Human-specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22
    • Bailey J.A., et al. Human-specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22. Am. J. Hum. Genet. 2002, 70:83-100.
    • (2002) Am. J. Hum. Genet. , vol.70 , pp. 83-100
    • Bailey, J.A.1
  • 49
    • 0348230989 scopus 로고    scopus 로고
    • Reciprocal crossovers and a positional preference for strand exchange in recombination events resulting in deletion or duplication of chromosome 17p11.2
    • Bi W., et al. Reciprocal crossovers and a positional preference for strand exchange in recombination events resulting in deletion or duplication of chromosome 17p11.2. Am. J. Hum. Genet. 2003, 73:1302-1315.
    • (2003) Am. J. Hum. Genet. , vol.73 , pp. 1302-1315
    • Bi, W.1
  • 50
    • 3342977799 scopus 로고    scopus 로고
    • Genomic context of paralogous recombination hotspots mediating recurrent NF1 region microdeletion
    • Forbes S.H., et al. Genomic context of paralogous recombination hotspots mediating recurrent NF1 region microdeletion. Genes Chromosomes Cancer 2004, 41:12-25.
    • (2004) Genes Chromosomes Cancer , vol.41 , pp. 12-25
    • Forbes, S.H.1
  • 51
    • 27544511087 scopus 로고    scopus 로고
    • Traffic of genetic information between segmental duplications flanking the typical 22q11.2 deletion in velo-cardio-facial syndrome/DiGeorge syndrome
    • Pavlicek A., et al. Traffic of genetic information between segmental duplications flanking the typical 22q11.2 deletion in velo-cardio-facial syndrome/DiGeorge syndrome. Genome Res. 2005, 15:1487-1495.
    • (2005) Genome Res. , vol.15 , pp. 1487-1495
    • Pavlicek, A.1
  • 52
    • 0038728033 scopus 로고    scopus 로고
    • Mutational mechanisms of Williams-Beuren syndrome deletions
    • Bayés M., et al. Mutational mechanisms of Williams-Beuren syndrome deletions. Am. J. Hum. Genet. 2003, 73:131-151.
    • (2003) Am. J. Hum. Genet. , vol.73 , pp. 131-151
    • Bayés, M.1
  • 53
    • 33845194247 scopus 로고    scopus 로고
    • Recurrent duplication-driven transposition of DNA during hominoid evolution
    • Johnson M.E., et al. Recurrent duplication-driven transposition of DNA during hominoid evolution. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:17626-17631.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 17626-17631
    • Johnson, M.E.1
  • 54
    • 35649007348 scopus 로고    scopus 로고
    • Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution
    • Jiang Z., et al. Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nat. Genet. 2007, 39:1361-1368.
    • (2007) Nat. Genet. , vol.39 , pp. 1361-1368
    • Jiang, Z.1
  • 55
    • 84861532037 scopus 로고    scopus 로고
    • Exploring the role of copy number variants in human adaptation
    • Iskow R.C., et al. Exploring the role of copy number variants in human adaptation. Trends Genet. 2012, 28:245-257.
    • (2012) Trends Genet. , vol.28 , pp. 245-257
    • Iskow, R.C.1
  • 56
    • 66049161452 scopus 로고    scopus 로고
    • Minimal effect of ectopic gene conversion among recent duplicates in four mammalian genomes
    • McGrath C.L., et al. Minimal effect of ectopic gene conversion among recent duplicates in four mammalian genomes. Genetics 2009, 182:615-622.
    • (2009) Genetics , vol.182 , pp. 615-622
    • McGrath, C.L.1
  • 57
    • 77955978479 scopus 로고    scopus 로고
    • Evolutionary pattern of gene homogenization between primate-specific paralogs after human and macaque speciation using the 4-2-4 method
    • Ezawa K., et al. Evolutionary pattern of gene homogenization between primate-specific paralogs after human and macaque speciation using the 4-2-4 method. Mol. Biol. Evol. 2010, 27:2152-2171.
    • (2010) Mol. Biol. Evol. , vol.27 , pp. 2152-2171
    • Ezawa, K.1
  • 58
    • 27244445201 scopus 로고    scopus 로고
    • Evidence for widespread reticulate evolution within human duplicons
    • Jackson M.S., et al. Evidence for widespread reticulate evolution within human duplicons. Am. J. Hum. Genet. 2005, 77:824-840.
    • (2005) Am. J. Hum. Genet. , vol.77 , pp. 824-840
    • Jackson, M.S.1
  • 59
    • 78049412267 scopus 로고    scopus 로고
    • Diversity of human copy number variation and multicopy genes
    • Sudmant P.H., et al. Diversity of human copy number variation and multicopy genes. Science 2010, 330:641-646.
    • (2010) Science , vol.330 , pp. 641-646
    • Sudmant, P.H.1
  • 60
    • 79959768175 scopus 로고    scopus 로고
    • The rate and tract length of gene conversion
    • Mansai S.P., et al. The rate and tract length of gene conversion. Genes 2011, 2:313-331.
    • (2011) Genes , vol.2 , pp. 313-331
    • Mansai, S.P.1
  • 61
    • 1942485886 scopus 로고    scopus 로고
    • The effect of gene conversion on the divergence between duplicated genes
    • Teshima K.M., Innan H. The effect of gene conversion on the divergence between duplicated genes. Genetics 2004, 166:1553-1560.
    • (2004) Genetics , vol.166 , pp. 1553-1560
    • Teshima, K.M.1    Innan, H.2
  • 62
    • 84863230553 scopus 로고    scopus 로고
    • Insights into hominid evolution from the gorilla genome sequence
    • Scally A., et al. Insights into hominid evolution from the gorilla genome sequence. Nature 2012, 483:169-175.
    • (2012) Nature , vol.483 , pp. 169-175
    • Scally, A.1
  • 63
    • 11144278605 scopus 로고    scopus 로고
    • Identification of a 3.0-kb major recombination hotspot in patients with Sotos syndrome who carry a common 1.9-Mb microdeletion
    • Visser R., et al. Identification of a 3.0-kb major recombination hotspot in patients with Sotos syndrome who carry a common 1.9-Mb microdeletion. Am. J. Hum. Genet. 2005, 76:52-67.
    • (2005) Am. J. Hum. Genet. , vol.76 , pp. 52-67
    • Visser, R.1
  • 64
    • 14044278843 scopus 로고    scopus 로고
    • Sotos syndrome common deletion is mediated by directly oriented subunits within inverted Sos-REP low-copy repeats
    • Kurotaki N., et al. Sotos syndrome common deletion is mediated by directly oriented subunits within inverted Sos-REP low-copy repeats. Hum. Mol. Genet. 2005, 14:535-542.
    • (2005) Hum. Mol. Genet. , vol.14 , pp. 535-542
    • Kurotaki, N.1
  • 65
    • 34047114932 scopus 로고    scopus 로고
    • Characterization of a recurrent 15q24 microdeletion syndrome
    • Sharp A.J., et al. Characterization of a recurrent 15q24 microdeletion syndrome. Hum. Mol. Genet. 2007, 16:567-572.
    • (2007) Hum. Mol. Genet. , vol.16 , pp. 567-572
    • Sharp, A.J.1
  • 66
    • 38849126088 scopus 로고    scopus 로고
    • Recurrent 16p11.2 microdeletions in autism
    • Kumar R.A., et al. Recurrent 16p11.2 microdeletions in autism. Hum. Mol. Genet. 2008, 17:628-638.
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 628-638
    • Kumar, R.A.1
  • 67
    • 39049163023 scopus 로고    scopus 로고
    • Association between microdeletion and microduplication at 16p11.2 and autism
    • Weiss L.A., et al. Association between microdeletion and microduplication at 16p11.2 and autism. N. Engl. J. Med. 2008, 358:667-675.
    • (2008) N. Engl. J. Med. , vol.358 , pp. 667-675
    • Weiss, L.A.1
  • 68
    • 0029999248 scopus 로고    scopus 로고
    • Primate origin of the CMT1A-REP repeat and analysis of a putative transposon-associated recombinational hotspot
    • Kiyosawa H., Chance P.F. Primate origin of the CMT1A-REP repeat and analysis of a putative transposon-associated recombinational hotspot. Hum. Mol. Genet. 1996, 5:745-753.
    • (1996) Hum. Mol. Genet. , vol.5 , pp. 745-753
    • Kiyosawa, H.1    Chance, P.F.2
  • 69
    • 0002843222 scopus 로고    scopus 로고
    • Gene conversion homogenizes the CMT1A paralogous repeats
    • Hurles M.E. Gene conversion homogenizes the CMT1A paralogous repeats. BMC Genomics 2001, 2:11.
    • (2001) BMC Genomics , vol.2 , pp. 11
    • Hurles, M.E.1
  • 70
    • 33749056284 scopus 로고    scopus 로고
    • A chromosomal rearrangement hotspot can be identified from population genetic variation and is coincident with a hotspot for allelic recombination
    • Lindsay S.J., et al. A chromosomal rearrangement hotspot can be identified from population genetic variation and is coincident with a hotspot for allelic recombination. Am. J. Hum. Genet. 2006, 79:890-902.
    • (2006) Am. J. Hum. Genet. , vol.79 , pp. 890-902
    • Lindsay, S.J.1
  • 71
    • 34147124382 scopus 로고    scopus 로고
    • Low copy repeats mediate distal chromosome 22q11.2 deletions: sequence analysis predicts breakpoint mechanisms
    • Shaikh T.H., et al. Low copy repeats mediate distal chromosome 22q11.2 deletions: sequence analysis predicts breakpoint mechanisms. Genome Res. 2007, 17:482-491.
    • (2007) Genome Res. , vol.17 , pp. 482-491
    • Shaikh, T.H.1
  • 72
    • 0033941864 scopus 로고    scopus 로고
    • Characterization of the NPHP1 locus: mutational mechanism involved in deletions in familial juvenile nephronophthisis
    • Saunier S., et al. Characterization of the NPHP1 locus: mutational mechanism involved in deletions in familial juvenile nephronophthisis. Am. J. Hum. Genet. 2000, 66:778-789.
    • (2000) Am. J. Hum. Genet. , vol.66 , pp. 778-789
    • Saunier, S.1
  • 73
    • 34247569809 scopus 로고    scopus 로고
    • Recurrent 10q22-q23 deletions: a genomic disorder on 10q associated with cognitive and behavioral abnormalities
    • Balciuniene J., et al. Recurrent 10q22-q23 deletions: a genomic disorder on 10q associated with cognitive and behavioral abnormalities. Am. J. Hum. Genet. 2007, 80:938-947.
    • (2007) Am. J. Hum. Genet. , vol.80 , pp. 938-947
    • Balciuniene, J.1
  • 74
    • 77649237272 scopus 로고    scopus 로고
    • Identification of a recurrent microdeletion at 17q23.1q23.2 flanked by segmental duplications associated with heart defects and limb abnormalities
    • Ballif B.C., et al. Identification of a recurrent microdeletion at 17q23.1q23.2 flanked by segmental duplications associated with heart defects and limb abnormalities. Am. J. Hum. Genet. 2010, 86:454-461.
    • (2010) Am. J. Hum. Genet. , vol.86 , pp. 454-461
    • Ballif, B.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.