메뉴 건너뛰기




Volumn 32, Issue 10, 2005, Pages 2635-2651

Employee turnover: A neural network solution

Author keywords

Artificial intelligence; Employee turnover; Genetic algorithm; Neural networks; Parsimonious

Indexed keywords

ARTIFICIAL INTELLIGENCE; GENETIC ALGORITHMS; INFORMATION USE; PERSONNEL; RISK ASSESSMENT; SUSTAINABLE DEVELOPMENT;

EID: 13544271760     PISSN: 03050548     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cor.2004.06.022     Document Type: Article
Times cited : (85)

References (28)
  • 1
    • 85070036511 scopus 로고    scopus 로고
    • Article. CCH-EXP, HRM- Personnel. 26 Oct. 2002
    • The Nature of Employee Turnover, 2002. Article. CCH-EXP, HRM- Personnel. 26 Oct. 2002 〈 http://80-health.cch.com 〉.
    • (2002) The Nature of Employee Turnover
  • 3
    • 85070032274 scopus 로고
    • Employee turnover: Analyzing employee movement out of the organization
    • June
    • Society for Human Resource Management, Employee Turnover: Analyzing Employee Movement Out of the Organization. SHRM White Papers. June 1993. 〈 http://www.shrm.org 〉.
    • (1993) SHRM White Papers
  • 4
    • 13544268202 scopus 로고    scopus 로고
    • Turnover at the Top
    • B. Leonard Turnover at the Top HR Magazine 46 2001 46
    • (2001) HR Magazine , vol.46 , pp. 46
    • Leonard, B.1
  • 5
    • 13544250395 scopus 로고    scopus 로고
    • Finding the right talent through sourcing and recruiting
    • S. Racz Finding the right talent through sourcing and recruiting Strategic Finance 82 2000 38
    • (2000) Strategic Finance , vol.82 , pp. 38
    • Racz, S.1
  • 6
    • 85070033181 scopus 로고    scopus 로고
    • Employee turnover hurts small and large company profitability
    • Galbreath R, 2000. Employee turnover hurts small and large company profitability. SHRM White Papers. 〈 http://www.shrm.org 〉.
    • (2000) SHRM White Papers
    • Galbreath, R.1
  • 7
    • 85070034607 scopus 로고    scopus 로고
    • Five ways to really irritate your employees
    • L. Hampton Five ways to really irritate your employees Business Credit 103 2001 20
    • (2001) Business Credit , vol.103 , pp. 20
    • Hampton, L.1
  • 10
    • 0031999703 scopus 로고    scopus 로고
    • Toward a global optimum for neural networks: A comparison of the genetic algorithm and backpropagation
    • R.S. Sexton, R.E. Dorsey, and J.D. Johnson Toward a global optimum for neural networks a comparison of the genetic algorithm and backpropagation Decision Support Systems 22 1998 171 185
    • (1998) Decision Support Systems , vol.22 , pp. 171-185
    • Sexton, R.S.1    Dorsey, R.E.2    Johnson, J.D.3
  • 11
    • 0034508915 scopus 로고    scopus 로고
    • Reliable classification using neural networks: A genetic algorithm and backpropagation comparison
    • R.S. Sexton, and R.E. Dorsey Reliable classification using neural networks a genetic algorithm and backpropagation comparison Decision Support Systems 30 2000 11 22
    • (2000) Decision Support Systems , vol.30 , pp. 11-22
    • Sexton, R.S.1    Dorsey, R.E.2
  • 12
    • 0034316975 scopus 로고    scopus 로고
    • Comparative evaluation of genetic algorithm and backpropagation for training neural networks
    • R.S. Sexton, and J.N.D. Gupta Comparative evaluation of genetic algorithm and backpropagation for training neural networks Information Sciences 129 2000 45 59
    • (2000) Information Sciences , vol.129 , pp. 45-59
    • Sexton, R.S.1    Gupta, J.N.D.2
  • 14
    • 0344585403 scopus 로고    scopus 로고
    • Simultaneous optimization of neural network function and architecture algorithm
    • R.S. Sexton, R.E. Dorsey, and N.A. Sikander Simultaneous optimization of neural network function and architecture algorithm Decision Support Systems 36 3 2004 283 296
    • (2004) Decision Support Systems , vol.36 , Issue.3 , pp. 283-296
    • Sexton, R.S.1    Dorsey, R.E.2    Sikander, N.A.3
  • 15
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • E.B. Baum, and D. Haussler What size net gives valid generalization? Neural Computation 1 1989 151 160
    • (1989) Neural Computation , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 16
    • 0345706091 scopus 로고
    • Optimisation of the architecture of feed-forward neural nets with hidden layers by unit elimination
    • A.N. Burkitt Optimisation of the architecture of feed-forward neural nets with hidden layers by unit elimination Complex Systems 5 1991 371 380
    • (1991) Complex Systems , vol.5 , pp. 371-380
    • Burkitt, A.N.1
  • 17
    • 0029326675 scopus 로고
    • A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems
    • D.B. Fogel A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems Simulation 64 6 1995 399 406
    • (1995) Simulation , vol.64 , Issue.6 , pp. 399-406
    • Fogel, D.B.1
  • 18
    • 0345706090 scopus 로고
    • Internal representation with minimum entropy in recurrent neural networks: Minimizing entropy through inhibitory connections
    • R. Kamimura Internal representation with minimum entropy in recurrent neural networks minimizing entropy through inhibitory connections Network Computation in Neural Systems 4 1993 423 440
    • (1993) Network Computation in Neural Systems , vol.4 , pp. 423-440
    • Kamimura, R.1
  • 19
    • 0042411671 scopus 로고
    • A study of experimental evaluations of neural network learning algorithm: Current research practice
    • Fakultat fur Informatik, Universitat Karlsruhe, D-76128 Karsruhe, Germany
    • Prechelt L. A study of experimental evaluations of neural network learning algorithm: current research practice, technical report 19/94, Fakultat fur Informatik, Universitat Karlsruhe, D-76128 Karsruhe, Germany, 1994. Anonymous FTP:/pub/papers/techreports/ 1994/1994-19.ps.Z on ftp.ira.uka.de.
    • (1994) Technical Report , vol.19 , Issue.94
    • Prechelt, L.1
  • 21
    • 0026953305 scopus 로고
    • Improving generalisation performance using double backpropagation
    • H. Drucker, and Y. LeCun Improving generalisation performance using double backpropagation IEEE Transactions on Neural Networks 3 1992 991 997
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 991-997
    • Drucker, H.1    Lecun, Y.2
  • 22
    • 0025447562 scopus 로고
    • A simple procedure for pruning back-propagation trained networks
    • E.D. Karmin A simple procedure for pruning back-propagation trained networks IEEE Transactions on Neural Networks 1 1990 239 242
    • (1990) IEEE Transactions on Neural Networks , vol.1 , pp. 239-242
    • Karmin, E.D.1
  • 24
    • 0002716457 scopus 로고
    • The use of artificial neural networks for estimation of decision surfaces in first price sealed bid auctions
    • W.W. Cooper A.B. Whinston Kluwer Academic Publishers Netherlands
    • R.E. Dorsey, J.D. Johnson, and M.V. Van Boening The use of artificial neural networks for estimation of decision surfaces in first price sealed bid auctions W.W. Cooper A.B. Whinston New Direction in Computational Economics 1994 Kluwer Academic Publishers Netherlands 19 40
    • (1994) New Direction in Computational Economics , pp. 19-40
    • Dorsey, R.E.1    Johnson, J.D.2    Van Boening, M.V.3
  • 25
    • 84952507313 scopus 로고
    • Genetic algorithms for estimation problems with multiple optima, non-differentiability, and other irregular features
    • R.E. Dorsey, and W.J. Mayer Genetic algorithms for estimation problems with multiple optima, non-differentiability, and other irregular features Journal of Business and Economic Statistics 13 1 1995 53 66
    • (1995) Journal of Business and Economic Statistics , vol.13 , Issue.1 , pp. 53-66
    • Dorsey, R.E.1    Mayer, W.J.2
  • 26
    • 1642491872 scopus 로고    scopus 로고
    • Improving decision effectiveness of artificial neural networks: A modified genetic algorithm approach
    • R.S. Sexton, R.S. Sriram, and H. Etheridge Improving decision effectiveness of artificial neural networks a modified genetic algorithm approach Decision Sciences 34 3 2003 421 442
    • (2003) Decision Sciences , vol.34 , Issue.3 , pp. 421-442
    • Sexton, R.S.1    Sriram, R.S.2    Etheridge, H.3
  • 27
    • 85138964246 scopus 로고    scopus 로고
    • Evolution of dynamic reconfigurable neural networks: Energy surface optimality using genetic algorithms
    • D.S. Levine W.R. Elsberry Lawrence Erlbaum Associates Nillsdale, NJ
    • R.E. Dorsey, and J.D. Johnson Evolution of dynamic reconfigurable neural networks energy surface optimality using genetic algorithms D.S. Levine W.R. Elsberry Optimality in biological and artificial networks 1997 Lawrence Erlbaum Associates Nillsdale, NJ 185 202
    • (1997) Optimality in Biological and Artificial Networks , pp. 185-202
    • Dorsey, R.E.1    Johnson, J.D.2
  • 28
    • 84984507941 scopus 로고
    • On tests for non-linearity in time series analysis
    • W.S. Chan, and H. Tong On tests for non-linearity in time series analysis Journal of forecasting 5 1986 217 228
    • (1986) Journal of Forecasting , vol.5 , pp. 217-228
    • Chan, W.S.1    Tong, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.