메뉴 건너뛰기




Volumn 121, Issue , 2013, Pages 99-107

Increasing the reliability of protein-protein interaction networks via non-convex semantic embedding

Author keywords

Bioinformatics; Denoising; Non convex semantic embedding (NCSE); Protein protein interaction (PPI)

Indexed keywords

DE-NOISING; EXPERIMENTAL INTERACTIONS; HIGH-THROUGHPUT TECHNIQUE; NONCONVEX COST FUNCTIONS; PROTEIN-PROTEIN INTERACTION NETWORKS; PROTEIN-PROTEIN INTERACTIONS; SEMANTIC EMBEDDING; STRUCTURAL ASSUMPTION;

EID: 84884142621     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.04.027     Document Type: Article
Times cited : (52)

References (58)
  • 1
    • 0035836765 scopus 로고    scopus 로고
    • A comprehensive two-hybrid analysis to explore the yeast protein interactome
    • Ito T., Chiba T., Ozawa R., et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 2001, 98:4569-4574.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 4569-4574
    • Ito, T.1    Chiba, T.2    Ozawa, R.3
  • 2
    • 33645453254 scopus 로고    scopus 로고
    • Global landscape of protein complexes in the yeast Saccharomyces cerevisiae
    • Krogan N.J., Cagney G., Yu H.Y., et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006, 440:637-643.
    • (2006) Nature , vol.440 , pp. 637-643
    • Krogan, N.J.1    Cagney, G.2    Yu, H.Y.3
  • 3
    • 0037050026 scopus 로고    scopus 로고
    • Functional organization of the yeast proteome by systematic analysis of protein complexes
    • Gavin A.C., Bosche M., Krause R., et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 2002, 415:141-147.
    • (2002) Nature , vol.415 , pp. 141-147
    • Gavin, A.C.1    Bosche, M.2    Krause, R.3
  • 4
    • 0037050004 scopus 로고    scopus 로고
    • Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
    • Ho Y., Gruhler A., Heilbut A., et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002, 415:180-183.
    • (2002) Nature , vol.415 , pp. 180-183
    • Ho, Y.1    Gruhler, A.2    Heilbut, A.3
  • 5
    • 0034628508 scopus 로고    scopus 로고
    • A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae
    • Uetz P., Giot L., Cagney G., et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000, 403:623-627.
    • (2000) Nature , vol.403 , pp. 623-627
    • Uetz, P.1    Giot, L.2    Cagney, G.3
  • 6
    • 0345600247 scopus 로고    scopus 로고
    • A protein interaction map of Drosophila melanogaster
    • Giot L., Bader J.S., Brouwer C., et al. A protein interaction map of Drosophila melanogaster. Science 2003, 302:1727-1736.
    • (2003) Science , vol.302 , pp. 1727-1736
    • Giot, L.1    Bader, J.S.2    Brouwer, C.3
  • 7
    • 33747837195 scopus 로고    scopus 로고
    • A lock-and-key model for protein-protein interactions
    • Morrison J.L., Breitling R., Higham D.J., et al. A lock-and-key model for protein-protein interactions. Bioinformatics 2006, 22:2012-2019.
    • (2006) Bioinformatics , vol.22 , pp. 2012-2019
    • Morrison, J.L.1    Breitling, R.2    Higham, D.J.3
  • 8
    • 0346725930 scopus 로고    scopus 로고
    • Unraveling protein interaction networks with near-optimal efficiency
    • Lappe M., Holm L. Unraveling protein interaction networks with near-optimal efficiency. Nat. Biotechnol. 2004, 22:98-103.
    • (2004) Nat. Biotechnol. , vol.22 , pp. 98-103
    • Lappe, M.1    Holm, L.2
  • 9
    • 0036805329 scopus 로고    scopus 로고
    • Bridging structural biology and genomics: assessing protein interaction data with known complexes
    • Edwards A.M., Kus B., Jansen R., et al. Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends Genet. 2002, 18:529-536.
    • (2002) Trends Genet. , vol.18 , pp. 529-536
    • Edwards, A.M.1    Kus, B.2    Jansen, R.3
  • 10
    • 12344323594 scopus 로고    scopus 로고
    • Conserved network motifs allow protein-protein interaction prediction
    • Albert I., Albert R. Conserved network motifs allow protein-protein interaction prediction. Bioinformatics 2004, 20:3346-3352.
    • (2004) Bioinformatics , vol.20 , pp. 3346-3352
    • Albert, I.1    Albert, R.2
  • 11
    • 0742304254 scopus 로고    scopus 로고
    • Prediction of protein function using protein-protein interaction data
    • Deng M., Zhang K., Mehta S., et al. Prediction of protein function using protein-protein interaction data. J. Comput. Biol. 2003, 10:947-960.
    • (2003) J. Comput. Biol. , vol.10 , pp. 947-960
    • Deng, M.1    Zhang, K.2    Mehta, S.3
  • 12
    • 67650742114 scopus 로고    scopus 로고
    • Assessing and predicting protein interactions using both local and global network topological metrics
    • Liu G., Li J., Wong L. Assessing and predicting protein interactions using both local and global network topological metrics. Genome Inf. 2008, 22:138-149.
    • (2008) Genome Inf. , vol.22 , pp. 138-149
    • Liu, G.1    Li, J.2    Wong, L.3
  • 13
    • 0036493195 scopus 로고    scopus 로고
    • Interaction generality, a measurement to assess the reliability of a protein-protein interaction
    • Saito R., Suzuki H., Hayashizaki Y. Interaction generality, a measurement to assess the reliability of a protein-protein interaction. Nucl. Acids Res 2002, 30:1163-1168.
    • (2002) Nucl. Acids Res , vol.30 , pp. 1163-1168
    • Saito, R.1    Suzuki, H.2    Hayashizaki, Y.3
  • 14
    • 0242500972 scopus 로고    scopus 로고
    • Construction of reliable protein-protein interaction networks with a new interaction generality measure
    • Saito R., Suzuki H., Hayashizaki Y. Construction of reliable protein-protein interaction networks with a new interaction generality measure. Bioinformatics 2003, 19:756-763.
    • (2003) Bioinformatics , vol.19 , pp. 756-763
    • Saito, R.1    Suzuki, H.2    Hayashizaki, Y.3
  • 15
    • 24144466886 scopus 로고    scopus 로고
    • Discovering reliable protein interactions from high-throughput experimental data using network topology
    • Chen J., Hsu W., Lee M.L., et al. Discovering reliable protein interactions from high-throughput experimental data using network topology. Artif. Intell. Med. 2005, 35:37-47.
    • (2005) Artif. Intell. Med. , vol.35 , pp. 37-47
    • Chen, J.1    Hsu, W.2    Lee, M.L.3
  • 16
    • 1442329655 scopus 로고    scopus 로고
    • Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network
    • r6
    • Brun C., Chevenet F., Martin D., et al. Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome Biol. 2003, 5. r6.
    • (2003) Genome Biol. , vol.5
    • Brun, C.1    Chevenet, F.2    Martin, D.3
  • 17
    • 33745619564 scopus 로고    scopus 로고
    • Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions
    • Chua H.N., Sung W.K., Wong L. Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics 2006, 22:1623-1630.
    • (2006) Bioinformatics , vol.22 , pp. 1623-1630
    • Chua, H.N.1    Sung, W.K.2    Wong, L.3
  • 18
    • 48149084438 scopus 로고    scopus 로고
    • Increasing the reliability of protein interactomes
    • Chua H.N., Wong L. Increasing the reliability of protein interactomes. Drug Discovery Today 2008, 13:652-658.
    • (2008) Drug Discovery Today , vol.13 , pp. 652-658
    • Chua, H.N.1    Wong, L.2
  • 20
    • 43049151837 scopus 로고    scopus 로고
    • Hierarchical structure and the prediction of missing links in networks
    • Clauset A., Moore C., Newman M.E.J. Hierarchical structure and the prediction of missing links in networks. Nature 2008, 453:98-101.
    • (2008) Nature , vol.453 , pp. 98-101
    • Clauset, A.1    Moore, C.2    Newman, M.E.J.3
  • 21
    • 70049106408 scopus 로고    scopus 로고
    • Geometric de-noising of protein-protein interaction networks
    • Kuchaiev O., Rasajski M., Higham D.J., et al. Geometric de-noising of protein-protein interaction networks. Plos Comput. Biol. 2009, 5:e1000454.
    • (2009) Plos Comput. Biol. , vol.5
    • Kuchaiev, O.1    Rasajski, M.2    Higham, D.J.3
  • 22
    • 77958498250 scopus 로고    scopus 로고
    • Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data
    • You Z.H., Lei Y.K., Gui J., et al. Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics 2010, 26:2744-2751.
    • (2010) Bioinformatics , vol.26 , pp. 2744-2751
    • You, Z.H.1    Lei, Y.K.2    Gui, J.3
  • 23
    • 33846672214 scopus 로고    scopus 로고
    • Biological network comparison using graphlet degree distribution
    • Pržulj N. Biological network comparison using graphlet degree distribution. Bioinformatics 2007, 23:e177-e183.
    • (2007) Bioinformatics , vol.23
    • Pržulj, N.1
  • 24
    • 12344273375 scopus 로고    scopus 로고
    • Modeling interactome: scale-free or geometric?
    • Przulj N., Corneil D.G., Jurisica I. Modeling interactome: scale-free or geometric?. Bioinformatics 2004, 20:3508-3515.
    • (2004) Bioinformatics , vol.20 , pp. 3508-3515
    • Przulj, N.1    Corneil, D.G.2    Jurisica, I.3
  • 25
  • 26
    • 41949139082 scopus 로고    scopus 로고
    • Fitting a geometric graph to a protein-protein interaction network
    • Higham D.J., Rasajski M., Przulji N. Fitting a geometric graph to a protein-protein interaction network. Bioinformatics 2008, 24:1093-1099.
    • (2008) Bioinformatics , vol.24 , pp. 1093-1099
    • Higham, D.J.1    Rasajski, M.2    Przulji, N.3
  • 28
    • 4444378917 scopus 로고    scopus 로고
    • Biochemical characterization of protein complexes from the Helicobacter pylori protein interaction map
    • Terradot L., Durnell N., Li M., et al. Biochemical characterization of protein complexes from the Helicobacter pylori protein interaction map. Mol. Cell. Proteom. 2004, 3:809-819.
    • (2004) Mol. Cell. Proteom. , vol.3 , pp. 809-819
    • Terradot, L.1    Durnell, N.2    Li, M.3
  • 29
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., De Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 30
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15:1373-1396.
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 31
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: locally linear embedding techniques for high-dimensional data
    • Donoho D.L., Grimes C. Hessian eigenmaps: locally linear embedding techniques for high-dimensional data. Proc. Natl. Acad. Sci. USA 2003, 100:5591.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 5591
    • Donoho, D.L.1    Grimes, C.2
  • 33
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290:2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 34
    • 84867920399 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
    • Zhang Z., Zha H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. J. Shanghai Univ. (Engl. Ed.) 2004, 8:406-424.
    • (2004) J. Shanghai Univ. (Engl. Ed.) , vol.8 , pp. 406-424
    • Zhang, Z.1    Zha, H.2
  • 36
    • 34250727581 scopus 로고    scopus 로고
    • Robust euclidean embedding, in: Proceedings of the 23rd International Conference on Machine Learning
    • L. Cayton, S. Dasgupta, Robust euclidean embedding, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 169-176.
    • (2006) , pp. 169-176
    • Cayton, L.1    Dasgupta, S.2
  • 37
    • 79955787030 scopus 로고    scopus 로고
    • Global geometric affinity for revealing high fidelity protein interaction network
    • Fang Y., Benjamin W., Sun M.T., et al. Global geometric affinity for revealing high fidelity protein interaction network. PLoS One 2011, 6:e19349.
    • (2011) PLoS One , vol.6
    • Fang, Y.1    Benjamin, W.2    Sun, M.T.3
  • 40
    • 77955989058 scopus 로고    scopus 로고
    • On the design of robust classifiers for computer vision, in IEEE
    • H. Masnadi-Shirazi, V. Mahadevan, N. Vasconcelos, On the design of robust classifiers for computer vision, in IEEE, 2010, pp. 779-786.
    • (2010) , pp. 779-786
    • Masnadi-Shirazi, H.1    Mahadevan, V.2    Vasconcelos, N.3
  • 42
    • 83555170269 scopus 로고    scopus 로고
    • Random classification noise defeats all convex potential boosters
    • Long P.M., Servedio R.A. Random classification noise defeats all convex potential boosters. Mach. Learn. 2010, 78:287-304.
    • (2010) Mach. Learn. , vol.78 , pp. 287-304
    • Long, P.M.1    Servedio, R.A.2
  • 43
    • 35348869458 scopus 로고    scopus 로고
    • Robust truncated hinge loss support vector machines
    • Wu Y.C., Liu Y.F. Robust truncated hinge loss support vector machines. J. Am. Stat. Assoc. 2007, 102:974-983.
    • (2007) J. Am. Stat. Assoc. , vol.102 , pp. 974-983
    • Wu, Y.C.1    Liu, Y.F.2
  • 44
    • 85162022489 scopus 로고    scopus 로고
    • Relaxed clipping: a global training method for robust regression and classification
    • Yu Y., Yang M., Xu L., et al. Relaxed clipping: a global training method for robust regression and classification. Adv. Neural Inf. Process. Syst. 2011, 23.
    • (2011) Adv. Neural Inf. Process. Syst. , vol.23
    • Yu, Y.1    Yang, M.2    Xu, L.3
  • 45
    • 56449098486 scopus 로고    scopus 로고
    • Training robust support vector machine with smooth Ramp loss in the primal space
    • Wang L., Jia H., Li J. Training robust support vector machine with smooth Ramp loss in the primal space. Neurocomputing 2008, 71:3020-3025.
    • (2008) Neurocomputing , vol.71 , pp. 3020-3025
    • Wang, L.1    Jia, H.2    Li, J.3
  • 47
    • 84884147449 scopus 로고    scopus 로고
    • Robust classification with adiabatic quantum optimization, Arxiv preprint arXiv:1205.1148
    • V.S. Denchev, N. Ding, S. Vishwanathan, et al., Robust classification with adiabatic quantum optimization, Arxiv preprint arXiv:1205.1148, 2012.
    • (2012)
    • Denchev, V.S.1    Ding, N.2    Vishwanathan, S.3
  • 50
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • Watts D.J., Strogatz S.H. Collective dynamics of 'small-world' networks. Nature 1998, 393:440-442.
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 52
    • 0039943513 scopus 로고
    • Lsqr-an algorithm for sparse linear-equations and sparse least-squares
    • Paige C.C., Saunders M.A. Lsqr-an algorithm for sparse linear-equations and sparse least-squares. ACM T. Math Software 1982, 8:43-71.
    • (1982) ACM T. Math Software , vol.8 , pp. 43-71
    • Paige, C.C.1    Saunders, M.A.2
  • 54
    • 33644555054 scopus 로고    scopus 로고
    • Proteome survey reveals modularity of the yeast cell machinery
    • Gavin A.C., Aloy P., Grandi P., et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 2006, 440:631-636.
    • (2006) Nature , vol.440 , pp. 631-636
    • Gavin, A.C.1    Aloy, P.2    Grandi, P.3
  • 55
    • 34147121646 scopus 로고    scopus 로고
    • Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae
    • Collins S.R., Kemmeren P., Zhao X.C., et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol. Cell. Proteom. 2007, 6:439-450.
    • (2007) Mol. Cell. Proteom. , vol.6 , pp. 439-450
    • Collins, S.R.1    Kemmeren, P.2    Zhao, X.C.3
  • 56
    • 10744230485 scopus 로고    scopus 로고
    • Global mapping of the yeast genetic interaction network
    • Tong A.H.Y., Lesage G., Bader G.D., et al. Global mapping of the yeast genetic interaction network. Science's STKE 2004, 303:808.
    • (2004) Science's STKE , vol.303 , pp. 808
    • Tong, A.H.Y.1    Lesage, G.2    Bader, G.D.3
  • 57
    • 0035212065 scopus 로고    scopus 로고
    • Is there a bias in proteome research?
    • Mrowka R., Patzak A., Herzel H. Is there a bias in proteome research?. Genome Res. 2001, 11:1971-1973.
    • (2001) Genome Res. , vol.11 , pp. 1971-1973
    • Mrowka, R.1    Patzak, A.2    Herzel, H.3
  • 58
    • 0034628487 scopus 로고    scopus 로고
    • Guilt-by-association goes global
    • Oliver S. Guilt-by-association goes global. Nature 2000, 403:601-603.
    • (2000) Nature , vol.403 , pp. 601-603
    • Oliver, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.