-
2
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1 - 2):1-305, 2008.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
4
-
-
33749241036
-
Comparing the mean field method and belief propagation for approximate inference in MRFs
-
David Saad and Manfred Opper, editors. MIT Press
-
Y. Weiss. Comparing the mean field method and belief propagation for approximate inference in MRFs. In David Saad and Manfred Opper, editors, Advanced Mean Field Methods. MIT Press, 2001.
-
(2001)
Advanced Mean Field Methods
-
-
Weiss, Y.1
-
8
-
-
6344274901
-
Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory
-
P. Grunwald and A. Dawid. Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory. Annals of Statistics, 32(4):1367-1433, 2004.
-
(2004)
Annals of Statistics
, vol.32
, Issue.4
, pp. 1367-1433
-
-
Grunwald, P.1
Dawid, A.2
-
10
-
-
33646516485
-
Possible generalization of boltzmann-gibbs statistics
-
C. Tsallis. Possible generalization of boltzmann-gibbs statistics. J. Stat. Phys., 52:479-487, 1988.
-
(1988)
J. Stat. Phys.
, vol.52
, pp. 479-487
-
-
Tsallis, C.1
-
11
-
-
0037114585
-
Deformed exponentials and logarithms in generalized thermostatistics
-
J. Naudts. Deformed exponentials and logarithms in generalized thermostatistics. Physica A, 316:323-334, 2002. URL http://arxiv.org/pdf/cond- mat/0203489.
-
(2002)
Physica A
, vol.316
, pp. 323-334
-
-
Naudts, J.1
-
13
-
-
0031076680
-
Student's t- and r-distributions: Unified derivation from an entropic variational principle
-
A. Sousa and C. Tsallis. Student's t- and r-distributions: Unified derivation from an entropic variational principle. Physica A, 236:52-57, 1994.
-
(1994)
Physica A
, vol.236
, pp. 52-57
-
-
Sousa, A.1
Tsallis, C.2
-
15
-
-
3042811704
-
Generalized thermostatistics based on deformed exponential and logarithmic functions
-
J. Naudts. Generalized thermostatistics based on deformed exponential and logarithmic functions. Physica A, 340:32-40, 2004.
-
(2004)
Physica A
, vol.340
, pp. 32-40
-
-
Naudts, J.1
-
16
-
-
0346215808
-
Generalized thermostatistics and mean-field theory
-
J. Naudts. Generalized thermostatistics and mean-field theory. Physica A, 332:279-300, 2004.
-
(2004)
Physica A
, vol.332
, pp. 279-300
-
-
Naudts, J.1
-
17
-
-
10344224541
-
Estimators, escort proabilities, and φ-exponential families in statistical physics
-
J. Naudts. Estimators, escort proabilities, and φ-exponential families in statistical physics. Journal of Inequalities in Pure and Applied Mathematics, 5(4), 2004.
-
(2004)
Journal of Inequalities in Pure and Applied Mathematics
, vol.5
, Issue.4
-
-
Naudts, J.1
-
18
-
-
85162034530
-
T-logistic regression
-
Richard Zemel, John Shawe-Taylor, John Lafferty, Chris Williams, and Alan Culota, editors
-
N. Ding and S. V. N. Vishwanathan. t-logistic regression. In Richard Zemel, John Shawe-Taylor, John Lafferty, Chris Williams, and Alan Culota, editors, Advances in Neural Information Processing Systems 23, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
-
-
Ding, N.1
Vishwanathan, S.V.N.2
-
20
-
-
0033280975
-
Additive models, boosting, and inference for generalized divergences
-
ACM Press, New York, NY
-
J. D. Lafferty. Additive models, boosting, and inference for generalized divergences. In Proc. Annual Conf. Computational Learning Theory, volume 12, pages 125-133. ACM Press, New York, NY, 1999.
-
(1999)
Proc. Annual Conf. Computational Learning Theory
, vol.12
, pp. 125-133
-
-
Lafferty, J.D.1
-
21
-
-
0000489740
-
Information type measures of differences of probability distribution and indirect observations
-
I. Csiszár. Information type measures of differences of probability distribution and indirect observations. Studia Math. Hungarica, 2:299-318, 1967.
-
(1967)
Studia Math. Hungarica
, vol.2
, pp. 299-318
-
-
Csiszár, I.1
-
22
-
-
0035370926
-
Relative loss bounds for on-line density estimation with the exponential family of distributions
-
Special issue on Theoretical Advances in On-line Learning, Game Theory and Boosting
-
K. Azoury and M. K. Warmuth. Relative loss bounds for on-line density estimation with the exponential family of distributions. Machine Learning, 43(3):211-246, 2001. Special issue on Theoretical Advances in On-line Learning, Game Theory and Boosting.
-
(2001)
Machine Learning
, vol.43
, Issue.3
, pp. 211-246
-
-
Azoury, K.1
Warmuth, M.K.2
-
23
-
-
85156232005
-
Fractional belief propagation
-
S. Becker, S. Thrun, and K. Obermayer, editors
-
W. Wiegerinck and T. Heskes. Fractional belief propagation. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 438-445, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 438-445
-
-
Wiegerinck, W.1
Heskes, T.2
-
24
-
-
0006885798
-
A Bayesian approach to online learning
-
Cambridge University Press
-
M. Opper. A Bayesian approach to online learning. In On-line Learning in Neural Networks, pages 363-378. Cambridge University Press, 1998.
-
(1998)
On-line Learning in Neural Networks
, pp. 363-378
-
-
Opper, M.1
-
25
-
-
0002436850
-
Tractable inference for complex stochastic processes
-
X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In UAI, 1998.
-
(1998)
UAI
-
-
Boyen, X.1
Koller, D.2
|