메뉴 건너뛰기




Volumn , Issue , 2011, Pages

T-divergence based approximate inference

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATE INFERENCE; BAYES POINTS; CONVEX DUALITY; DIVERGENCE MEASURES; EXPONENTIAL FAMILY; GRAPHICAL MODEL; LOG PARTITION FUNCTION; MODEL-BASED OPC; POINT MACHINES; STUDENT-T PRIORS;

EID: 85162377040     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (18)

References (26)
  • 2
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1 - 2):1-305, 2008.
    • (2008) Foundations and Trends in Machine Learning , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 4
    • 33749241036 scopus 로고    scopus 로고
    • Comparing the mean field method and belief propagation for approximate inference in MRFs
    • David Saad and Manfred Opper, editors. MIT Press
    • Y. Weiss. Comparing the mean field method and belief propagation for approximate inference in MRFs. In David Saad and Manfred Opper, editors, Advanced Mean Field Methods. MIT Press, 2001.
    • (2001) Advanced Mean Field Methods
    • Weiss, Y.1
  • 8
    • 6344274901 scopus 로고    scopus 로고
    • Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory
    • P. Grunwald and A. Dawid. Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory. Annals of Statistics, 32(4):1367-1433, 2004.
    • (2004) Annals of Statistics , vol.32 , Issue.4 , pp. 1367-1433
    • Grunwald, P.1    Dawid, A.2
  • 10
    • 33646516485 scopus 로고
    • Possible generalization of boltzmann-gibbs statistics
    • C. Tsallis. Possible generalization of boltzmann-gibbs statistics. J. Stat. Phys., 52:479-487, 1988.
    • (1988) J. Stat. Phys. , vol.52 , pp. 479-487
    • Tsallis, C.1
  • 11
    • 0037114585 scopus 로고    scopus 로고
    • Deformed exponentials and logarithms in generalized thermostatistics
    • J. Naudts. Deformed exponentials and logarithms in generalized thermostatistics. Physica A, 316:323-334, 2002. URL http://arxiv.org/pdf/cond- mat/0203489.
    • (2002) Physica A , vol.316 , pp. 323-334
    • Naudts, J.1
  • 13
    • 0031076680 scopus 로고
    • Student's t- and r-distributions: Unified derivation from an entropic variational principle
    • A. Sousa and C. Tsallis. Student's t- and r-distributions: Unified derivation from an entropic variational principle. Physica A, 236:52-57, 1994.
    • (1994) Physica A , vol.236 , pp. 52-57
    • Sousa, A.1    Tsallis, C.2
  • 15
    • 3042811704 scopus 로고    scopus 로고
    • Generalized thermostatistics based on deformed exponential and logarithmic functions
    • J. Naudts. Generalized thermostatistics based on deformed exponential and logarithmic functions. Physica A, 340:32-40, 2004.
    • (2004) Physica A , vol.340 , pp. 32-40
    • Naudts, J.1
  • 16
    • 0346215808 scopus 로고    scopus 로고
    • Generalized thermostatistics and mean-field theory
    • J. Naudts. Generalized thermostatistics and mean-field theory. Physica A, 332:279-300, 2004.
    • (2004) Physica A , vol.332 , pp. 279-300
    • Naudts, J.1
  • 17
    • 10344224541 scopus 로고    scopus 로고
    • Estimators, escort proabilities, and φ-exponential families in statistical physics
    • J. Naudts. Estimators, escort proabilities, and φ-exponential families in statistical physics. Journal of Inequalities in Pure and Applied Mathematics, 5(4), 2004.
    • (2004) Journal of Inequalities in Pure and Applied Mathematics , vol.5 , Issue.4
    • Naudts, J.1
  • 18
    • 85162034530 scopus 로고    scopus 로고
    • T-logistic regression
    • Richard Zemel, John Shawe-Taylor, John Lafferty, Chris Williams, and Alan Culota, editors
    • N. Ding and S. V. N. Vishwanathan. t-logistic regression. In Richard Zemel, John Shawe-Taylor, John Lafferty, Chris Williams, and Alan Culota, editors, Advances in Neural Information Processing Systems 23, 2010.
    • (2010) Advances in Neural Information Processing Systems , vol.23
    • Ding, N.1    Vishwanathan, S.V.N.2
  • 20
    • 0033280975 scopus 로고    scopus 로고
    • Additive models, boosting, and inference for generalized divergences
    • ACM Press, New York, NY
    • J. D. Lafferty. Additive models, boosting, and inference for generalized divergences. In Proc. Annual Conf. Computational Learning Theory, volume 12, pages 125-133. ACM Press, New York, NY, 1999.
    • (1999) Proc. Annual Conf. Computational Learning Theory , vol.12 , pp. 125-133
    • Lafferty, J.D.1
  • 21
    • 0000489740 scopus 로고
    • Information type measures of differences of probability distribution and indirect observations
    • I. Csiszár. Information type measures of differences of probability distribution and indirect observations. Studia Math. Hungarica, 2:299-318, 1967.
    • (1967) Studia Math. Hungarica , vol.2 , pp. 299-318
    • Csiszár, I.1
  • 22
    • 0035370926 scopus 로고    scopus 로고
    • Relative loss bounds for on-line density estimation with the exponential family of distributions
    • Special issue on Theoretical Advances in On-line Learning, Game Theory and Boosting
    • K. Azoury and M. K. Warmuth. Relative loss bounds for on-line density estimation with the exponential family of distributions. Machine Learning, 43(3):211-246, 2001. Special issue on Theoretical Advances in On-line Learning, Game Theory and Boosting.
    • (2001) Machine Learning , vol.43 , Issue.3 , pp. 211-246
    • Azoury, K.1    Warmuth, M.K.2
  • 23
    • 85156232005 scopus 로고    scopus 로고
    • Fractional belief propagation
    • S. Becker, S. Thrun, and K. Obermayer, editors
    • W. Wiegerinck and T. Heskes. Fractional belief propagation. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 438-445, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 438-445
    • Wiegerinck, W.1    Heskes, T.2
  • 24
    • 0006885798 scopus 로고    scopus 로고
    • A Bayesian approach to online learning
    • Cambridge University Press
    • M. Opper. A Bayesian approach to online learning. In On-line Learning in Neural Networks, pages 363-378. Cambridge University Press, 1998.
    • (1998) On-line Learning in Neural Networks , pp. 363-378
    • Opper, M.1
  • 25
    • 0002436850 scopus 로고    scopus 로고
    • Tractable inference for complex stochastic processes
    • X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In UAI, 1998.
    • (1998) UAI
    • Boyen, X.1    Koller, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.