메뉴 건너뛰기




Volumn 33, Issue 2, 2011, Pages 368-381

Nonconvex online support vector machines

Author keywords

active learning.; nonconvex optimization; Online learning; support vector machines

Indexed keywords

ACTIVE LEARNING; DUALITY GAP; EXPERIMENTAL EVALUATION; FILTERING MECHANISM; GENERALIZATION PERFORMANCE; INTERMEDIATE MODEL; NOISY DATA CLASSIFICATION; NONCONVEX; NONCONVEX OPTIMIZATION; ONLINE LEARNING; ONLINE SUPPORT VECTOR MACHINES; RUNNING TIME; SPARSER MODELS; SUPPORT VECTOR; SVM ALGORITHM;

EID: 78650514073     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2010.109     Document Type: Article
Times cited : (152)

References (23)
  • 1
  • 4
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, "Support Vector Networks, " MachineLearning, vol. 20, pp. 273-297, 1995.
    • (1995) MachineLearning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 0033870982 scopus 로고    scopus 로고
    • Improved generalizationthrough explicit optimization of margins
    • L. Mason, P.L. Bartlett, and J. Baxter, "Improved Generalizationthrough Explicit Optimization of Margins, " Machine Learning, vol. 38, pp. 243-255, 2000.
    • (2000) Machine Learning , vol.38 , pp. 243-255
    • Mason, L.1    Bartlett, P.L.2    Baxter, J.3
  • 9
    • 15944365213 scopus 로고    scopus 로고
    • Multicategory learning andsupport vector machine: Computational tools
    • Y. Liu, X. Shen, and H. Doss, "Multicategory Learning andSupport Vector Machine: Computational Tools, " J. Computationaland Graphical Statistics, vol. 14, pp. 219-236, 2005.
    • (2005) J. Computationaland Graphical Statistics , vol.14 , pp. 219-236
    • Liu, Y.1    Shen, X.2    Doss, H.3
  • 10
    • 56449098486 scopus 로고    scopus 로고
    • Training robust support vectormachine with smooth ramp loss in the primal space
    • L. Wang, H. Jia, and J. Li, "Training Robust Support VectorMachine with Smooth Ramp Loss in the Primal Space, "Neurocomputing, vol. 71, pp. 3020-3025, 2008.
    • (2008) Neurocomputing , vol.71 , pp. 3020-3025
    • Wang, L.1    Jia, H.2    Li, J.3
  • 15
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines usingsequential minimal optimization
    • MIT Press
    • J.C. Platt, "Fast Training of Support Vector Machines UsingSequential Minimal Optimization, " Advances in Kernel Methods:Support Vector Learning, pp. 185-208, MIT Press, 1999.
    • (1999) Advances in Kernel Methods:Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 17
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to platt's SMO algorithm for SVM classifierdesign
    • S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and K.R.K. Murthy, "Improvements to Platt's SMO Algorithm for SVM ClassifierDesign, " Neural Computation, vol. 13, no. 3, pp. 637-649, 2001.
    • (2001) Neural Computation , vol.13 , Issue.3 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 18
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • O. Chapelle, "Training a Support Vector Machine in the Primal, "Neural Computation, vol. 19, no. 5, pp. 1155-1178, 2007.
    • (2007) Neural Computation , vol.19 , Issue.5 , pp. 1155-1178
    • Chapelle, O.1
  • 19
    • 4644354708 scopus 로고    scopus 로고
    • Sparseness of support vector machines
    • I. Steinwart, "Sparseness of Support Vector Machines, " J. MachineLearning Research, vol. 4, pp. 1071-1105, 2003.
    • (2003) J. MachineLearning Research , vol.4 , pp. 1071-1105
    • Steinwart, I.1
  • 20
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning withsupport vector machines
    • G. Schohn and D. Cohn, "Less Is More: Active Learning withSupport Vector Machines, " Proc. Int'l Conf. Machine Learning, pp. 839-846, 2000.
    • (2000) Proc. Int'l Conf. Machine Learning , pp. 839-846
    • Schohn, G.1    Cohn, D.2
  • 21
    • 0003425660 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Univ. Dortmund
    • T. Joachims, "Text Categorization with Support Vector Machines:Learning with Many Relevant Features, " Technical Report 23, Univ. Dortmund, 1997.
    • (1997) Technical Report , vol.23
    • Joachims, T.1
  • 22
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learningwith applications to text classification
    • S. Tong and D. Koller, "Support Vector Machine Active Learningwith Applications to Text Classification, " J. Machine LearningResearch, vol. 2, pp. 45-66, 2001.
    • (2001) J. Machine LearningResearch , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 23
    • 38649118902 scopus 로고    scopus 로고
    • Second-order SMO improves SVM online and active learning
    • T. Glasmachers and C. Igel, "Second-Order SMO Improves SVMOnline and Active Learning, " Neural Computation, vol. 20, no. 2, pp. 374-382, 2008.
    • (2008) Neural Computation , vol.20 , Issue.2 , pp. 374-382
    • Glasmachers, T.1    Igel, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.