-
1
-
-
0034902286
-
Receptor for the group B coxsackieviruses and adenoviruses: CAR
-
doi:10.1002/rmv.318
-
Carson SD, (2001) Receptor for the group B coxsackieviruses and adenoviruses: CAR. Rev Med Virol 11: 219-226. doi:10.1002/rmv.318. PubMed: 11479928.
-
(2001)
Rev Med Virol
, vol.11
, pp. 219-226
-
-
Carson, S.D.1
-
2
-
-
16844382964
-
CAR: a virus receptor within the tight junction
-
doi:10.1016/j.addr.2005.01.007
-
Coyne CB, Bergelson JM, (2005) CAR: a virus receptor within the tight junction. Adv Drug Deliv Rev 57: 869-882. doi:10.1016/j.addr.2005.01.007. PubMed: 15820557.
-
(2005)
Adv Drug Deliv Rev
, vol.57
, pp. 869-882
-
-
Coyne, C.B.1
Bergelson, J.M.2
-
3
-
-
0031052263
-
Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5
-
doi:10.1126/science.275.5304.1320
-
Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, et al. (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275: 1320-1323. doi:10.1126/science.275.5304.1320. PubMed: 9036860.
-
(1997)
Science
, vol.275
, pp. 1320-1323
-
-
Bergelson, J.M.1
Cunningham, J.A.2
Droguett, G.3
Kurt-Jones, E.A.4
Krithivas, A.5
-
4
-
-
0030915715
-
HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses
-
doi:10.1073/pnas.94.7.3352
-
Tomko RP, Xu R, Philipson L, (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A 94: 3352-3356. doi:10.1073/pnas.94.7.3352. PubMed: 9096397.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 3352-3356
-
-
Tomko, R.P.1
Xu, R.2
Philipson, L.3
-
5
-
-
0031575920
-
Purification of the putative coxsackievirus B receptor from HeLa cells
-
doi:10.1006/bbrc.1997.6449
-
Carson SD, Chapman NN, Tracy SM, (1997) Purification of the putative coxsackievirus B receptor from HeLa cells. Biochem Biophys Res Commun 233: 325-328. doi:10.1006/bbrc.1997.6449. PubMed: 9144533.
-
(1997)
Biochem Biophys Res Commun
, vol.233
, pp. 325-328
-
-
Carson, S.D.1
Chapman, N.N.2
Tracy, S.M.3
-
6
-
-
0034646786
-
The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain
-
doi:10.1016/S0169-328X(00)00036-X
-
Honda T, Saitoh H, Masuko M, Katagiri-Abe T, Tominaga K, et al. (2000) The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain. Brain Res Mol Brain Res 77: 19-28. doi:10.1016/S0169-328X(00)00036-X. PubMed: 10814828.
-
(2000)
Brain Res Mol Brain Res
, vol.77
, pp. 19-28
-
-
Honda, T.1
Saitoh, H.2
Masuko, M.3
Katagiri-Abe, T.4
Tominaga, K.5
-
7
-
-
34249666768
-
Interaction of the Coxsackie and adenovirus receptor (CAR) with the cytoskeleton: binding to actin
-
doi:10.1016/j.febslet.2007.05.019
-
Huang KC, Yasruel Z, Guérin C, Holland PC, Nalbantoglu J, (2007) Interaction of the Coxsackie and adenovirus receptor (CAR) with the cytoskeleton: binding to actin. FEBS Lett 581: 2702-2708. doi:10.1016/j.febslet.2007.05.019. PubMed: 17531226.
-
(2007)
FEBS Lett
, vol.581
, pp. 2702-2708
-
-
Huang, K.C.1
Yasruel, Z.2
Guérin, C.3
Holland, P.C.4
Nalbantoglu, J.5
-
8
-
-
77649108637
-
The coxsackievirus-adenovirus receptor reveals complex homophilic and heterophilic interactions on neural cells
-
doi:10.1523/JNEUROSCI.5725-09.2010
-
Patzke C, Max KE, Behlke J, Schreiber J, Schmidt H, et al. (2010) The coxsackievirus-adenovirus receptor reveals complex homophilic and heterophilic interactions on neural cells. J Neurosci 30: 2897-2910. doi:10.1523/JNEUROSCI.5725-09.2010. PubMed: 20181587.
-
(2010)
J Neurosci
, vol.30
, pp. 2897-2910
-
-
Patzke, C.1
Max, K.E.2
Behlke, J.3
Schreiber, J.4
Schmidt, H.5
-
9
-
-
0035910098
-
The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction
-
doi:10.1073/pnas.261452898
-
Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, et al. (2001) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci U S A 98: 15191-15196. doi:10.1073/pnas.261452898. PubMed: 11734628.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 15191-15196
-
-
Cohen, C.J.1
Shieh, J.T.2
Pickles, R.J.3
Okegawa, T.4
Hsieh, J.T.5
-
10
-
-
9144243706
-
The coxsackievirus and adenovirus receptor interacts with the multi-PDZ domain protein-1 (MUPP-1) within the tight junction
-
doi:10.1074/jbc.M409061200
-
Coyne CB, Voelker T, Pichla SL, Bergelson JM, (2004) The coxsackievirus and adenovirus receptor interacts with the multi-PDZ domain protein-1 (MUPP-1) within the tight junction. J Biol Chem 279: 48079-48084. doi:10.1074/jbc.M409061200. PubMed: 15364909.
-
(2004)
J Biol Chem
, vol.279
, pp. 48079-48084
-
-
Coyne, C.B.1
Voelker, T.2
Pichla, S.L.3
Bergelson, J.M.4
-
11
-
-
0033541587
-
Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells
-
doi:10.1089/10430349950018409
-
Nalbantoglu J, Pari G, Karpati G, Holland PC, (1999) Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells. Hum Gene Ther 10: 1009-1019. doi:10.1089/10430349950018409. PubMed: 10223734.
-
(1999)
Hum Gene Ther
, vol.10
, pp. 1009-1019
-
-
Nalbantoglu, J.1
Pari, G.2
Karpati, G.3
Holland, P.C.4
-
12
-
-
10144246575
-
Isoform-specific expression of the Coxsackie and adenovirus receptor (CAR) in neuromuscular junction and cardiac intercalated discs
-
doi:10.1186/1471-2121-5-42
-
Shaw CA, Holland PC, Sinnreich M, Allen C, Sollerbrant K, et al. (2004) Isoform-specific expression of the Coxsackie and adenovirus receptor (CAR) in neuromuscular junction and cardiac intercalated discs. BMC Cell Biol 5: 42. doi:10.1186/1471-2121-5-42. PubMed: 15533241.
-
(2004)
BMC Cell Biol
, vol.5
, pp. 42
-
-
Shaw, C.A.1
Holland, P.C.2
Sinnreich, M.3
Allen, C.4
Sollerbrant, K.5
-
13
-
-
22244489661
-
Coxsackievirus and adenovirus receptor is essential for cardiomyocyte development
-
doi:10.1002/gene.20127
-
Asher DR, Cerny AM, Weiler SR, Horner JW, Keeler ML, et al. (2005) Coxsackievirus and adenovirus receptor is essential for cardiomyocyte development. Genesis 42: 77-85. doi:10.1002/gene.20127. PubMed: 15864812.
-
(2005)
Genesis
, vol.42
, pp. 77-85
-
-
Asher, D.R.1
Cerny, A.M.2
Weiler, S.R.3
Horner, J.W.4
Keeler, M.L.5
-
14
-
-
24344465923
-
Coxsackievirus-adenovirus receptor (CAR) is essential for early embryonic cardiac development
-
doi:10.1242/jcs.02476
-
Dorner AA, Wegmann F, Butz S, Wolburg-Buchholz K, Wolburg H, et al. (2005) Coxsackievirus-adenovirus receptor (CAR) is essential for early embryonic cardiac development. J Cell Sci 118: 3509-3521. doi:10.1242/jcs.02476. PubMed: 16079292.
-
(2005)
J Cell Sci
, vol.118
, pp. 3509-3521
-
-
Dorner, A.A.1
Wegmann, F.2
Butz, S.3
Wolburg-Buchholz, K.4
Wolburg, H.5
-
15
-
-
33646123538
-
Cardiomyocyte-specific deletion of the coxsackievirus and adenovirus receptor results in hyperplasia of the embryonic left ventricle and abnormalities of sinuatrial valves
-
doi:10.1161/01.RES.0000218041.41932.e3
-
Chen JW, Zhou B, Yu QC, Shin SJ, Jiao K, et al. (2006) Cardiomyocyte-specific deletion of the coxsackievirus and adenovirus receptor results in hyperplasia of the embryonic left ventricle and abnormalities of sinuatrial valves. Circ Res 98: 923-930. doi:10.1161/01.RES.0000218041.41932.e3. PubMed: 16543498.
-
(2006)
Circ Res
, vol.98
, pp. 923-930
-
-
Chen, J.W.1
Zhou, B.2
Yu, Q.C.3
Shin, S.J.4
Jiao, K.5
-
16
-
-
48749127844
-
Coxsackievirus and adenovirus receptor (CAR) mediates atrioventricular-node function and connexin 45 localization in the murine heart
-
doi:10.1172/JCI34777
-
Lim BK, Xiong D, Dorner A, Youn TJ, Yung A, et al. (2008) Coxsackievirus and adenovirus receptor (CAR) mediates atrioventricular-node function and connexin 45 localization in the murine heart. J Clin Invest 118: 2758-2770. doi:10.1172/JCI34777. PubMed: 18636119.
-
(2008)
J Clin Invest
, vol.118
, pp. 2758-2770
-
-
Lim, B.K.1
Xiong, D.2
Dorner, A.3
Youn, T.J.4
Yung, A.5
-
17
-
-
53349097084
-
The tight junction protein CAR regulates cardiac conduction and cell-cell communication
-
doi:10.1084/jem.20080897
-
Lisewski U, Shi Y, Wrackmeyer U, Fischer R, Chen C, et al. (2008) The tight junction protein CAR regulates cardiac conduction and cell-cell communication. J Exp Med 205: 2369-2379. doi:10.1084/jem.20080897. PubMed: 18794341.
-
(2008)
J Exp Med
, vol.205
, pp. 2369-2379
-
-
Lisewski, U.1
Shi, Y.2
Wrackmeyer, U.3
Fischer, R.4
Chen, C.5
-
18
-
-
79958063088
-
Multiple phenotypes in adult mice following inactivation of the Coxsackievirus and Adenovirus Receptor (Car) gene
-
doi:10.1371/journal.pone.0020203
-
Pazirandeh A, Sultana T, Mirza M, Rozell B, Hultenby K, et al. (2011) Multiple phenotypes in adult mice following inactivation of the Coxsackievirus and Adenovirus Receptor (Car) gene. PLOS ONE 6: e20203. doi:10.1371/journal.pone.0020203. PubMed: 21674029.
-
(2011)
PLOS ONE
, vol.6
-
-
Pazirandeh, A.1
Sultana, T.2
Mirza, M.3
Rozell, B.4
Hultenby, K.5
-
19
-
-
19644367752
-
Neutrophil migration across tight junctions is mediated by adhesive interactions between epithelial coxsackie and adenovirus receptor and a junctional adhesion molecule-like protein on neutrophils
-
doi:10.1091/mbc.E05-01-0036
-
Zen K, Liu Y, McCall IC, Wu T, Lee W, et al. (2005) Neutrophil migration across tight junctions is mediated by adhesive interactions between epithelial coxsackie and adenovirus receptor and a junctional adhesion molecule-like protein on neutrophils. Mol Biol Cell 16: 2694-2703. doi:10.1091/mbc.E05-01-0036. PubMed: 15800062.
-
(2005)
Mol Biol Cell
, vol.16
, pp. 2694-2703
-
-
Zen, K.1
Liu, Y.2
McCall, I.C.3
Wu, T.4
Lee, W.5
-
20
-
-
58849114504
-
Role of junctional adhesion molecule-like protein in mediating monocyte transendothelial migration
-
doi:10.1161/ATVBAHA.108.177717
-
Guo YL, Bai R, Chen CX, Liu DQ, Liu Y, et al. (2009) Role of junctional adhesion molecule-like protein in mediating monocyte transendothelial migration. Arterioscler Thromb Vasc Biol 29: 75-83. doi:10.1161/ATVBAHA.108.177717. PubMed: 18948633.
-
(2009)
Arterioscler Thromb Vasc Biol
, vol.29
, pp. 75-83
-
-
Guo, Y.L.1
Bai, R.2
Chen, C.X.3
Liu, D.Q.4
Liu, Y.5
-
21
-
-
77956273963
-
The junctional adhesion molecule JAML is a costimulatory receptor for epithelial gammadelta T cell activation
-
doi:10.1126/science.1192698
-
Witherden DA, Verdino P, Rieder SE, Garijo O, Mills RE, et al. (2010) The junctional adhesion molecule JAML is a costimulatory receptor for epithelial gammadelta T cell activation. Science 329: 1205-1210. doi:10.1126/science.1192698. PubMed: 20813954.
-
(2010)
Science
, vol.329
, pp. 1205-1210
-
-
Witherden, D.A.1
Verdino, P.2
Rieder, S.E.3
Garijo, O.4
Mills, R.E.5
-
22
-
-
0035420192
-
The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure
-
Okegawa T, Pong RC, Li Y, Bergelson JM, Sagalowsky AI, et al. (2001) The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure. Cancer Res 61: 6592-6600. PubMed: 11522659.
-
(2001)
Cancer Res
, vol.61
, pp. 6592-6600
-
-
Okegawa, T.1
Pong, R.C.2
Li, Y.3
Bergelson, J.M.4
Sagalowsky, A.I.5
-
23
-
-
0038146845
-
The coxsackievirus and adenovirus receptor acts as a tumour suppressor in malignant glioma cells
-
doi:10.1038/sj.bjc.6600932
-
Kim M, Sumerel LA, Belousova N, Lyons GR, Carey DE, et al. (2003) The coxsackievirus and adenovirus receptor acts as a tumour suppressor in malignant glioma cells. Br J Cancer 88: 1411-1416. doi:10.1038/sj.bjc.6600932. PubMed: 12778071.
-
(2003)
Br J Cancer
, vol.88
, pp. 1411-1416
-
-
Kim, M.1
Sumerel, L.A.2
Belousova, N.3
Lyons, G.R.4
Carey, D.E.5
-
24
-
-
11944269529
-
Impact of the coxsackie and adenovirus receptor (CAR) on glioma cell growth and invasion: requirement for the C-terminal domain
-
doi:10.1002/ijc.20623
-
Huang KC, Altinoz M, Wosik K, Larochelle N, Koty Z, et al. (2005) Impact of the coxsackie and adenovirus receptor (CAR) on glioma cell growth and invasion: requirement for the C-terminal domain. Int J Cancer 113: 738-745. doi:10.1002/ijc.20623. PubMed: 15499626.
-
(2005)
Int J Cancer
, vol.113
, pp. 738-745
-
-
Huang, K.C.1
Altinoz, M.2
Wosik, K.3
Larochelle, N.4
Koty, Z.5
-
25
-
-
52949099119
-
The ADAM metalloproteinases
-
doi:10.1016/j.mam.2008.08.001
-
Edwards DR, Handsley MM, Pennington CJ, (2008) The ADAM metalloproteinases. Mol Aspects Med 29: 258-289. doi:10.1016/j.mam.2008.08.001. PubMed: 18762209.
-
(2008)
Mol Aspects Med
, vol.29
, pp. 258-289
-
-
Edwards, D.R.1
Handsley, M.M.2
Pennington, C.J.3
-
26
-
-
26444448409
-
L1 is sequentially processed by two differently activated metalloproteases and presenilin/gamma-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth
-
doi:10.1128/MCB.25.20.9040-9053.2005
-
Maretzky T, Schulte M, Ludwig A, Rose-John S, Blobel C, et al. (2005) L1 is sequentially processed by two differently activated metalloproteases and presenilin/gamma-secretase and regulates neural cell adhesion, cell migration, and neurite outgrowth. Mol Cell Biol 25: 9040-9053. doi:10.1128/MCB.25.20.9040-9053.2005. PubMed: 16199880.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 9040-9053
-
-
Maretzky, T.1
Schulte, M.2
Ludwig, A.3
Rose-John, S.4
Blobel, C.5
-
27
-
-
1942533555
-
Ectodomain shedding of the neural recognition molecule CHL1 by the metalloprotease-disintegrin ADAM8 promotes neurite outgrowth and suppresses neuronal cell death
-
doi:10.1074/jbc.M400560200
-
Naus S, Richter M, Wildeboer D, Moss M, Schachner M, et al. (2004) Ectodomain shedding of the neural recognition molecule CHL1 by the metalloprotease-disintegrin ADAM8 promotes neurite outgrowth and suppresses neuronal cell death. J Biol Chem 279: 16083-16090. doi:10.1074/jbc.M400560200. PubMed: 14761956.
-
(2004)
J Biol Chem
, vol.279
, pp. 16083-16090
-
-
Naus, S.1
Richter, M.2
Wildeboer, D.3
Moss, M.4
Schachner, M.5
-
28
-
-
15444371289
-
ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling
-
doi:10.1038/sj.emboj.7600548
-
Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, et al. (2005) ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling. EMBO J 24: 742-752. doi:10.1038/sj.emboj.7600548. PubMed: 15692570.
-
(2005)
EMBO J
, vol.24
, pp. 742-752
-
-
Reiss, K.1
Maretzky, T.2
Ludwig, A.3
Tousseyn, T.4
de Strooper, B.5
-
29
-
-
79955663580
-
Regulated intramembrane proteolysis--lessons from amyloid precursor protein processing
-
doi:10.1111/j.1471-4159.2011.07248.x
-
Lichtenthaler SF, Haass C, Steiner H, (2011) Regulated intramembrane proteolysis--lessons from amyloid precursor protein processing. J Neurochem 117: 779-796. doi:10.1111/j.1471-4159.2011.07248.x. PubMed: 21413990.
-
(2011)
J Neurochem
, vol.117
, pp. 779-796
-
-
Lichtenthaler, S.F.1
Haass, C.2
Steiner, H.3
-
30
-
-
53749105377
-
Presenilins: members of the gamma-secretase quartets, but part-time soloists too
-
doi:10.1152/physiol.00009.2008
-
Wakabayashi T, De Strooper B, (2008) Presenilins: members of the gamma-secretase quartets, but part-time soloists too. Physiol (Bethesda) 23: 194-204. doi:10.1152/physiol.00009.2008. PubMed: 18697993.
-
(2008)
Physiol (Bethesda)
, vol.23
, pp. 194-204
-
-
Wakabayashi, T.1
De Strooper, B.2
-
31
-
-
0035816661
-
A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60
-
doi:10.1126/science.1058783
-
Cao X, Südhof TC, (2001) A transcriptionally [correction of transcriptively] active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293: 115-120. doi:10.1126/science.1058783. PubMed: 11441186.
-
(2001)
Science
, vol.293
, pp. 115-120
-
-
Cao, X.1
Südhof, T.C.2
-
32
-
-
0033920919
-
Notch signal transduction: a real rip and more
-
doi:10.1016/S0959-437X(00)00097-6
-
Weinmaster G, (2000) Notch signal transduction: a real rip and more. Curr Opin Genet Dev 10: 363-369. doi:10.1016/S0959-437X(00)00097-6. PubMed: 10889061.
-
(2000)
Curr Opin Genet Dev
, vol.10
, pp. 363-369
-
-
Weinmaster, G.1
-
33
-
-
0037470179
-
The Coxsackievirus and adenovirus receptor (CAR) forms a complex with the PDZ domain-containing protein ligand-of-numb protein-X (LNX)
-
doi:10.1074/jbc.M205927200
-
Sollerbrant K, Raschperger E, Mirza M, Engstrom U, Philipson L, et al. (2003) The Coxsackievirus and adenovirus receptor (CAR) forms a complex with the PDZ domain-containing protein ligand-of-numb protein-X (LNX). J Biol Chem 278: 7439-7444. doi:10.1074/jbc.M205927200. PubMed: 12468544.
-
(2003)
J Biol Chem
, vol.278
, pp. 7439-7444
-
-
Sollerbrant, K.1
Raschperger, E.2
Mirza, M.3
Engstrom, U.4
Philipson, L.5
-
34
-
-
13044278313
-
Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency
-
doi:10.1073/pnas.96.21.11872
-
Herreman A, Hartmann D, Annaert W, Saftig P, Craessaerts K, et al. (1999) Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc Natl Acad Sci U S A 96: 11872-11877. doi:10.1073/pnas.96.21.11872. PubMed: 10518543.
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, pp. 11872-11877
-
-
Herreman, A.1
Hartmann, D.2
Annaert, W.3
Saftig, P.4
Craessaerts, K.5
-
35
-
-
0037444574
-
gamma-Secretase activity requires the presenilin-dependent trafficking of nicastrin through the Golgi apparatus but not its complex glycosylation
-
doi:10.1242/jcs.00292
-
Herreman A, Van Gassen G, Bentahir M, Nyabi O, Craessaerts K, et al. (2003) gamma-Secretase activity requires the presenilin-dependent trafficking of nicastrin through the Golgi apparatus but not its complex glycosylation. J Cell Sci 116: 1127-1136. doi:10.1242/jcs.00292. PubMed: 12584255.
-
(2003)
J Cell Sci
, vol.116
, pp. 1127-1136
-
-
Herreman, A.1
Van Gassen, G.2
Bentahir, M.3
Nyabi, O.4
Craessaerts, K.5
-
36
-
-
0027157536
-
Mechanism of kit ligand, phorbol ester, and calcium-induced down-regulation of c-kit receptors in mast cells
-
Yee NS, Langen H, Besmer P, (1993) Mechanism of kit ligand, phorbol ester, and calcium-induced down-regulation of c-kit receptors in mast cells. J Biol Chem 268: 14189-14201. PubMed: 7686152.
-
(1993)
J Biol Chem
, vol.268
, pp. 14189-14201
-
-
Yee, N.S.1
Langen, H.2
Besmer, P.3
-
37
-
-
33846056925
-
Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx
-
Horiuchi K, Le Gall S, Schulte M, Yamaguchi T, Reiss K, et al. (2007) Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol Biol Cell 18: 176-188. PubMed: 17079736.
-
(2007)
Mol Biol Cell
, vol.18
, pp. 176-188
-
-
Horiuchi, K.1
Le Gall, S.2
Schulte, M.3
Yamaguchi, T.4
Reiss, K.5
-
38
-
-
65249090883
-
ADAMs 10 and 17 represent differentially regulated components of a general shedding machinery for membrane proteins such as transforming growth factor alpha, L-selectin, and tumor necrosis factor alpha
-
doi:10.1091/mbc.E08-11-1135
-
Le Gall, Bobé P, Reiss K, Horiuchi K, Niu XD, et al. (2009) ADAMs 10 and 17 represent differentially regulated components of a general shedding machinery for membrane proteins such as transforming growth factor alpha, L-selectin, and tumor necrosis factor alpha. Mol Biol Cell 20: 1785-1794. doi:10.1091/mbc.E08-11-1135. PubMed: 19158376.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 1785-1794
-
-
Le, G.1
Bobé, P.2
Reiss, K.3
Horiuchi, K.4
Niu, X.D.5
-
39
-
-
0020326790
-
Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters
-
Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, et al. (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257: 7847-7851. PubMed: 7085651.
-
(1982)
J Biol Chem
, vol.257
, pp. 7847-7851
-
-
Castagna, M.1
Takai, Y.2
Kaibuchi, K.3
Sano, K.4
Kikkawa, U.5
-
40
-
-
0036882397
-
Protein ectodomain shedding
-
doi:10.1021/cr010202t
-
Arribas J, Borroto A, (2002) Protein ectodomain shedding. Chem Rev 102: 4627-4638. doi:10.1021/cr010202t. PubMed: 12475204.
-
(2002)
Chem Rev
, vol.102
, pp. 4627-4638
-
-
Arribas, J.1
Borroto, A.2
-
41
-
-
1442358746
-
Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands
-
doi:10.1083/jcb.200307137
-
Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S, et al. (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164: 769-779. doi:10.1083/jcb.200307137. PubMed: 14993236.
-
(2004)
J Cell Biol
, vol.164
, pp. 769-779
-
-
Sahin, U.1
Weskamp, G.2
Kelly, K.3
Zhou, H.M.4
Higashiyama, S.5
-
42
-
-
81255188391
-
Tissue inhibitors of metalloproteinases
-
doi:10.1186/gb-2011-12-11-233
-
Murphy G, (2011) Tissue inhibitors of metalloproteinases. Genome Biol 12: 233. doi:10.1186/gb-2011-12-11-233. PubMed: 22078297.
-
(2011)
Genome Biol
, vol.12
, pp. 233
-
-
Murphy, G.1
-
43
-
-
37249079599
-
The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events
-
doi:10.1074/jbc.M703231200
-
Moss ML, Bomar M, Liu Q, Sage H, Dempsey P, et al. (2007) The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events. J Biol Chem 282: 35712-35721. doi:10.1074/jbc.M703231200. PubMed: 17895248.
-
(2007)
J Biol Chem
, vol.282
, pp. 35712-35721
-
-
Moss, M.L.1
Bomar, M.2
Liu, Q.3
Sage, H.4
Dempsey, P.5
-
44
-
-
33847268830
-
Solution structure of the coxsackievirus and adenovirus receptor domain 2
-
doi:10.1110/ps.062643507
-
Jiang S, Caffrey M, (2007) Solution structure of the coxsackievirus and adenovirus receptor domain 2. Protein Sci 16: 539-542. doi:10.1110/ps.062643507. PubMed: 17322536.
-
(2007)
Protein Sci
, vol.16
, pp. 539-542
-
-
Jiang, S.1
Caffrey, M.2
-
45
-
-
77956315469
-
Gamma-secretase and the intramembrane proteolysis of Notch
-
doi:10.1016/S0070-2153(10)92006-1
-
Jorissen E, De Strooper B, (2010) Gamma-secretase and the intramembrane proteolysis of Notch. Curr Top Dev Biol 92: 201-230. doi:10.1016/S0070-2153(10)92006-1. PubMed: 20816396.
-
(2010)
Curr Top Dev Biol
, vol.92
, pp. 201-230
-
-
Jorissen, E.1
De Strooper, B.2
-
46
-
-
2342661720
-
Regulators of neurite outgrowth: role of cell adhesion molecules
-
doi:10.1196/annals.1294.015
-
Kiryushko D, Berezin V, Bock E, (2004) Regulators of neurite outgrowth: role of cell adhesion molecules. Ann N Y Acad Sci 1014: 140-154. doi:10.1196/annals.1294.015. PubMed: 15153429.
-
(2004)
Ann N Y Acad Sci
, vol.1014
, pp. 140-154
-
-
Kiryushko, D.1
Berezin, V.2
Bock, E.3
-
47
-
-
16244411349
-
Calcium signalling in growth cone migration
-
doi:10.1016/j.ceca.2005.01.007
-
Bolsover SR, (2005) Calcium signalling in growth cone migration. Cell Calcium 37: 395-402. doi:10.1016/j.ceca.2005.01.007. PubMed: 15820386.
-
(2005)
Cell Calcium
, vol.37
, pp. 395-402
-
-
Bolsover, S.R.1
-
48
-
-
27844539756
-
Protein kinase C and the regulation of the actin cytoskeleton
-
doi:10.1016/j.cellsig.2005.07.010
-
Larsson C, (2006) Protein kinase C and the regulation of the actin cytoskeleton. Cell Signal 18: 276-284. doi:10.1016/j.cellsig.2005.07.010. PubMed: 16109477.
-
(2006)
Cell Signal
, vol.18
, pp. 276-284
-
-
Larsson, C.1
-
49
-
-
75149161903
-
PKC and the control of localized signal dynamics
-
doi:10.1038/nrm2847
-
Rosse C, Linch M, Kermorgant S, Cameron AJ, Boeckeler K, et al. (2010) PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol 11: 103-112. doi:10.1038/nrm2847. PubMed: 20094051.
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 103-112
-
-
Rosse, C.1
Linch, M.2
Kermorgant, S.3
Cameron, A.J.4
Boeckeler, K.5
-
50
-
-
3042554386
-
Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca(2+) influx and PKC activation
-
doi:10.1083/jcb.200310024
-
Nagano O, Murakami D, Hartmann D, De Strooper B, Saftig P, et al. (2004) Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca(2+) influx and PKC activation. J Cell Biol 165: 893-902. doi:10.1083/jcb.200310024. PubMed: 15197174.
-
(2004)
J Cell Biol
, vol.165
, pp. 893-902
-
-
Nagano, O.1
Murakami, D.2
Hartmann, D.3
De Strooper, B.4
Saftig, P.5
-
51
-
-
83555165986
-
MMP-9 induces CD44 cleavage and CD44 mediated cell migration in glioblastoma xenograft cells
-
doi:10.1016/j.cellsig.2011.10.008
-
Chetty C, Vanamala SK, Gondi CS, Dinh DH, Gujrati M, et al. (2012) MMP-9 induces CD44 cleavage and CD44 mediated cell migration in glioblastoma xenograft cells. Cell Signal 24: 549-559. doi:10.1016/j.cellsig.2011.10.008. PubMed: 22024282.
-
(2012)
Cell Signal
, vol.24
, pp. 549-559
-
-
Chetty, C.1
Vanamala, S.K.2
Gondi, C.S.3
Dinh, D.H.4
Gujrati, M.5
-
52
-
-
0035947766
-
Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration
-
doi:10.1083/jcb.153.5.893
-
Kajita M, Itoh Y, Chiba T, Mori H, Okada A, et al. (2001) Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol 153: 893-904. doi:10.1083/jcb.153.5.893. PubMed: 11381077.
-
(2001)
J Cell Biol
, vol.153
, pp. 893-904
-
-
Kajita, M.1
Itoh, Y.2
Chiba, T.3
Mori, H.4
Okada, A.5
-
53
-
-
77955060812
-
Fell-Muir Lecture: Metalloproteinases: from demolition squad to master regulators
-
doi:10.1111/j.1365-2613.2010.00736.x
-
Murphy G, (2010) Fell-Muir Lecture: Metalloproteinases: from demolition squad to master regulators. Int J Exp Pathol 91: 303-313. doi:10.1111/j.1365-2613.2010.00736.x. PubMed: 20666850.
-
(2010)
Int J Exp Pathol
, vol.91
, pp. 303-313
-
-
Murphy, G.1
-
54
-
-
33646565312
-
(Make) stick and cut loose--disintegrin metalloproteases in development and disease
-
doi:10.1002/bdrc.20066
-
Tousseyn T, Jorissen E, Reiss K, Hartmann D, (2006) (Make) stick and cut loose--disintegrin metalloproteases in development and disease. Birth Defects Res C Embryo TODAY 78: 24-46. doi:10.1002/bdrc.20066. PubMed: 16622847.
-
(2006)
Birth Defects Res C Embryo TODAY
, vol.78
, pp. 24-46
-
-
Tousseyn, T.1
Jorissen, E.2
Reiss, K.3
Hartmann, D.4
-
55
-
-
84864106172
-
The cytosolic domain of protein-tyrosine kinase 7 (PTK7), generated from sequential cleavage by a disintegrin and metalloprotease 17 (ADAM17) and gamma-secretase, enhances cell proliferation and migration in colon cancer cells
-
doi:10.1074/jbc.M112.348904
-
Na HW, Shin WS, Ludwig A, Lee ST, (2012) The cytosolic domain of protein-tyrosine kinase 7 (PTK7), generated from sequential cleavage by a disintegrin and metalloprotease 17 (ADAM17) and gamma-secretase, enhances cell proliferation and migration in colon cancer cells. J Biol Chem 287: 25001-25009. doi:10.1074/jbc.M112.348904. PubMed: 22665490.
-
(2012)
J Biol Chem
, vol.287
, pp. 25001-25009
-
-
Na, H.W.1
Shin, W.S.2
Ludwig, A.3
Lee, S.T.4
-
56
-
-
77954380513
-
Sequential and gamma-secretase-dependent processing of the betacellulin precursor generates a palmitoylated intracellular-domain fragment that inhibits cell growth
-
doi:10.1242/jcs.060830
-
Stoeck A, Shang L, Dempsey PJ, (2010) Sequential and gamma-secretase-dependent processing of the betacellulin precursor generates a palmitoylated intracellular-domain fragment that inhibits cell growth. J Cell Sci 123: 2319-2331. doi:10.1242/jcs.060830. PubMed: 20530572.
-
(2010)
J Cell Sci
, vol.123
, pp. 2319-2331
-
-
Stoeck, A.1
Shang, L.2
Dempsey, P.J.3
-
57
-
-
54949110552
-
Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements
-
doi:10.1371/journal.pbio.0060257
-
Hemming ML, Elias JE, Gygi SP, Selkoe DJ, (2008) Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements. PLOS Biol 6: e257. doi:10.1371/journal.pbio.0060257. PubMed: 18942891.
-
(2008)
PLOS Biol
, vol.6
-
-
Hemming, M.L.1
Elias, J.E.2
Gygi, S.P.3
Selkoe, D.J.4
-
58
-
-
23744491374
-
Nicastrin functions as a gamma-secretase-substrate receptor
-
doi:10.1016/j.cell.2005.05.022
-
Shah S, Lee SF, Tabuchi K, Hao YH, Yu C, et al. (2005) Nicastrin functions as a gamma-secretase-substrate receptor. Cell 122: 435-447. doi:10.1016/j.cell.2005.05.022. PubMed: 16096062.
-
(2005)
Cell
, vol.122
, pp. 435-447
-
-
Shah, S.1
Lee, S.F.2
Tabuchi, K.3
Hao, Y.H.4
Yu, C.5
-
59
-
-
0027991383
-
The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD
-
Kopan R, Nye JS, Weintraub H, (1994) The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120: 2385-2396. PubMed: 7956819.
-
(1994)
Development
, vol.120
, pp. 2385-2396
-
-
Kopan, R.1
Nye, J.S.2
Weintraub, H.3
-
60
-
-
66449103810
-
ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the gamma-secretase
-
Tousseyn T, Thathiah A, Jorissen E, Raemaekers T, Konietzko U, et al. (2009) ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the gamma-secretase. J Biol Chem 284: 11738-11747. PubMed: 19213735.
-
(2009)
J Biol Chem
, vol.284
, pp. 11738-11747
-
-
Tousseyn, T.1
Thathiah, A.2
Jorissen, E.3
Raemaekers, T.4
Konietzko, U.5
-
61
-
-
0038322593
-
gamma-Secretase cleavage and binding to FE65 regulate the nuclear translocation of the intracellular C-terminal domain (ICD) of the APP family of proteins
-
doi:10.1021/bi027375c
-
Walsh DM, Fadeeva JV, LaVoie MJ, Paliga K, Eggert S, et al. (2003) gamma-Secretase cleavage and binding to FE65 regulate the nuclear translocation of the intracellular C-terminal domain (ICD) of the APP family of proteins. Biochemistry 42: 6664-6673. doi:10.1021/bi027375c. PubMed: 12779321.
-
(2003)
Biochemistry
, vol.42
, pp. 6664-6673
-
-
Walsh, D.M.1
Fadeeva, J.V.2
LaVoie, M.J.3
Paliga, K.4
Eggert, S.5
-
62
-
-
37549016046
-
Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1
-
doi:10.1128/MCB.00863-07
-
Tagami S, Okochi M, Yanagida K, Ikuta A, Fukumori A, et al. (2008) Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1. Mol Cell Biol 28: 165-176. doi:10.1128/MCB.00863-07. PubMed: 17967888.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 165-176
-
-
Tagami, S.1
Okochi, M.2
Yanagida, K.3
Ikuta, A.4
Fukumori, A.5
-
63
-
-
8844229536
-
Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover
-
doi:10.1016/j.molcel.2004.10.014
-
Fryer CJ, White JB, Jones KA, (2004) Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 16: 509-520. doi:10.1016/j.molcel.2004.10.014. PubMed: 15546612.
-
(2004)
Mol Cell
, vol.16
, pp. 509-520
-
-
Fryer, C.J.1
White, J.B.2
Jones, K.A.3
-
64
-
-
2942557122
-
Gamma-secretase: proteasome of the membrane?
-
doi:10.1038/nrg1380
-
Kopan R, Ilagan MX, (2004) Gamma-secretase: proteasome of the membrane? Nat Rev Mol Cell Biol 5: 499-504. doi:10.1038/nrg1380. PubMed: 15173829.
-
(2004)
Nat Rev Mol Cell Biol
, vol.5
, pp. 499-504
-
-
Kopan, R.1
Ilagan, M.X.2
-
65
-
-
0032574993
-
Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain
-
doi:10.1038/30756
-
Schroeter EH, Kisslinger JA, Kopan R, (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393: 382-386. doi:10.1038/30756. PubMed: 9620803.
-
(1998)
Nature
, vol.393
, pp. 382-386
-
-
Schroeter, E.H.1
Kisslinger, J.A.2
Kopan, R.3
-
66
-
-
0036102154
-
Fatty acid modification of the coxsackievirus and adenovirus receptor
-
doi:10.1128/JVI.76.12.6382-6386.2002
-
van't Hof W, Crystal RG, (2002) Fatty acid modification of the coxsackievirus and adenovirus receptor. J Virol 76: 6382-6386. doi:10.1128/JVI.76.12.6382-6386.2002. PubMed: 12021372.
-
(2002)
J Virol
, vol.76
, pp. 6382-6386
-
-
van't Hof, W.1
Crystal, R.G.2
-
67
-
-
78650718836
-
The intracellular dynamic of protein palmitoylation
-
doi:10.1083/jcb.201008160
-
Salaun C, Greaves J, Chamberlain LH, (2010) The intracellular dynamic of protein palmitoylation. J Cell Biol 191: 1229-1238. doi:10.1083/jcb.201008160. PubMed: 21187327.
-
(2010)
J Cell Biol
, vol.191
, pp. 1229-1238
-
-
Salaun, C.1
Greaves, J.2
Chamberlain, L.H.3
-
68
-
-
67349131266
-
Dynamic protein palmitoylation in cellular signaling
-
doi:10.1016/j.plipres.2009.02.001
-
Iwanaga T, Tsutsumi R, Noritake J, Fukata Y, Fukata M, (2009) Dynamic protein palmitoylation in cellular signaling. Prog Lipid Res 48: 117-127. doi:10.1016/j.plipres.2009.02.001. PubMed: 19233228.
-
(2009)
Prog Lipid Res
, vol.48
, pp. 117-127
-
-
Iwanaga, T.1
Tsutsumi, R.2
Noritake, J.3
Fukata, Y.4
Fukata, M.5
-
69
-
-
84867722362
-
Activity-dependent proteolytic cleavage of neuroligin-1
-
doi:10.1016/j.neuron.2012.10.003
-
Suzuki K, Hayashi Y, Nakahara S, Kumazaki H, Prox J, et al. (2012) Activity-dependent proteolytic cleavage of neuroligin-1. Neuron 76: 410-422. doi:10.1016/j.neuron.2012.10.003. PubMed: 23083742.
-
(2012)
Neuron
, vol.76
, pp. 410-422
-
-
Suzuki, K.1
Hayashi, Y.2
Nakahara, S.3
Kumazaki, H.4
Prox, J.5
-
70
-
-
33745086859
-
Proteolytic cleavage of the neural cell adhesion molecule by ADAM17/TACE is involved in neurite outgrowth
-
doi:10.1111/j.1471-4159.2006.03847.x
-
Kalus I, Bormann U, Mzoughi M, Schachner M, Kleene R, (2006) Proteolytic cleavage of the neural cell adhesion molecule by ADAM17/TACE is involved in neurite outgrowth. J Neurochem 98: 78-88. doi:10.1111/j.1471-4159.2006.03847.x. PubMed: 16805798.
-
(2006)
J Neurochem
, vol.98
, pp. 78-88
-
-
Kalus, I.1
Bormann, U.2
Mzoughi, M.3
Schachner, M.4
Kleene, R.5
-
71
-
-
21844474852
-
Neural cell adhesion molecule function is regulated by metalloproteinase-mediated ectodomain release
-
doi:10.1002/jnr.20530
-
Hübschmann MV, Skladchikova G, Bock E, Berezin V, (2005) Neural cell adhesion molecule function is regulated by metalloproteinase-mediated ectodomain release. J Neurosci Res 80: 826-837. doi:10.1002/jnr.20530. PubMed: 15884014.
-
(2005)
J Neurosci Res
, vol.80
, pp. 826-837
-
-
Hübschmann, M.V.1
Skladchikova, G.2
Bock, E.3
Berezin, V.4
-
72
-
-
41149135274
-
Developmental regulation of GABAergic interneuron branching and synaptic development in the prefrontal cortex by soluble neural cell adhesion molecule
-
doi:10.1016/j.mcn.2008.01.006
-
Brennaman LH, Maness PF, (2008) Developmental regulation of GABAergic interneuron branching and synaptic development in the prefrontal cortex by soluble neural cell adhesion molecule. Mol Cell Neurosci 37: 781-793. doi:10.1016/j.mcn.2008.01.006. PubMed: 18289872.
-
(2008)
Mol Cell Neurosci
, vol.37
, pp. 781-793
-
-
Brennaman, L.H.1
Maness, P.F.2
-
73
-
-
33750807736
-
Metalloprotease-induced ectodomain shedding of neural cell adhesion molecule (NCAM)
-
doi:10.1002/neu.20257
-
Hinkle CL, Diestel S, Lieberman J, Maness PF, (2006) Metalloprotease-induced ectodomain shedding of neural cell adhesion molecule (NCAM). J Neurobiol 66: 1378-1395. doi:10.1002/neu.20257. PubMed: 16967505.
-
(2006)
J Neurobiol
, vol.66
, pp. 1378-1395
-
-
Hinkle, C.L.1
Diestel, S.2
Lieberman, J.3
Maness, P.F.4
-
74
-
-
33845567392
-
TACE-induced cleavage of NgR and p75NTR in dorsal root ganglion cultures disinhibits outgrowth and promotes branching of neurites in the presence of inhibitory CNS myelin
-
doi:10.1096/fj.05-5339fje
-
Ahmed Z, Mazibrada G, Seabright RJ, Dent RG, Berry M, et al. (2006) TACE-induced cleavage of NgR and p75NTR in dorsal root ganglion cultures disinhibits outgrowth and promotes branching of neurites in the presence of inhibitory CNS myelin. FASEB J 20: 1939-1941. doi:10.1096/fj.05-5339fje. PubMed: 16849393.
-
(2006)
FASEB J
, vol.20
, pp. 1939-1941
-
-
Ahmed, Z.1
Mazibrada, G.2
Seabright, R.J.3
Dent, R.G.4
Berry, M.5
-
75
-
-
84876553840
-
An intracellular domain fragment of the p75 neurotrophin receptor (p75(NTR)) enhances tropomyosin receptor kinase A (TrkA) receptor function
-
doi:10.1074/jbc.M112.436469
-
Matusica D, Skeldal S, Sykes AM, Palstra N, Sharma A, et al. (2013) An intracellular domain fragment of the p75 neurotrophin receptor (p75(NTR)) enhances tropomyosin receptor kinase A (TrkA) receptor function. J Biol Chem 288: 11144-11154. doi:10.1074/jbc.M112.436469. PubMed: 23471969.
-
(2013)
J Biol Chem
, vol.288
, pp. 11144-11154
-
-
Matusica, D.1
Skeldal, S.2
Sykes, A.M.3
Palstra, N.4
Sharma, A.5
-
76
-
-
33646153988
-
The coxsackie- and adenovirus receptor (CAR) is an in vivo marker for epithelial tight junctions, with a potential role in regulating permeability and tissue homeostasis
-
doi:10.1016/j.yexcr.2006.01.025
-
Raschperger E, Thyberg J, Pettersson S, Philipson L, Fuxe J, et al. (2006) The coxsackie- and adenovirus receptor (CAR) is an in vivo marker for epithelial tight junctions, with a potential role in regulating permeability and tissue homeostasis. Exp Cell Res 312: 1566-1580. doi:10.1016/j.yexcr.2006.01.025. PubMed: 16542650.
-
(2006)
Exp Cell Res
, vol.312
, pp. 1566-1580
-
-
Raschperger, E.1
Thyberg, J.2
Pettersson, S.3
Philipson, L.4
Fuxe, J.5
-
77
-
-
33747736649
-
A basolateral sorting signal directs ADAM10 to adherens junctions and is required for its function in cell migration
-
doi:10.1074/jbc.M601542200
-
Wild-Bode C, Fellerer K, Kugler J, Haass C, Capell A, (2006) A basolateral sorting signal directs ADAM10 to adherens junctions and is required for its function in cell migration. J Biol Chem 281: 23824-23829. doi:10.1074/jbc.M601542200. PubMed: 16777847.
-
(2006)
J Biol Chem
, vol.281
, pp. 23824-23829
-
-
Wild-Bode, C.1
Fellerer, K.2
Kugler, J.3
Haass, C.4
Capell, A.5
|