메뉴 건너뛰기




Volumn 121, Issue , 2014, Pages 61-71

A classification-based approach to monitoring the safety of dynamic systems

Author keywords

Anomaly detection; Approximate inference; Dynamic classification; Hidden Markov models; Monitoring

Indexed keywords

MONITORING; QUALITY ASSURANCE; SAFETY ENGINEERING;

EID: 84883365248     PISSN: 09518320     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ress.2013.07.016     Document Type: Article
Times cited : (5)

References (39)
  • 2
    • 33845270980 scopus 로고    scopus 로고
    • Expectation correction for smoothed inference in switching linear dynamical systems
    • D. Barber Expectation correction for smoothed inference in switching linear dynamical systems Journal of Machine Learning Research 7 2006 2515 2540 (Pubitemid 44866739)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2515-2540
    • Barber, D.1
  • 6
    • 17444410780 scopus 로고    scopus 로고
    • Software reliability modelling and prediction with hidden Markov chains
    • DOI 10.1191/1471082X05st87oa
    • J.-B. Durand, and O. Gaudoin Software reliability modelling and prediction with hidden Markov chains Statistical Modelling 5 1 2005 75 93 (Pubitemid 40549471)
    • (2005) Statistical Modelling , vol.5 , Issue.1 , pp. 75-93
    • Durand, J.-B.1    Gaudoin, O.2
  • 8
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • N. Friedman, D. Geiger, and M. Goldszmidt Bayesian network classifiers Machine Learning 29 2-3 1997 131 163 (Pubitemid 127510036)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 12
    • 0002049440 scopus 로고    scopus 로고
    • Learning dynamic bayesian networks
    • Adaptive Processing of Sequences and Data Structures
    • Ghahramani Z. Learning dynamic Bayesian networks. In: Adaptive processing of sequences and data structures, international summer school on neural networks, "E.R. Caianiello"-tutorial lectures. London, UK: Springer-Verlag; 1998. p. 168-97. (Pubitemid 128056031)
    • (1998) Lecture Notes in Computer Science , Issue.1387 , pp. 168-197
    • Ghahramani, Z.1
  • 13
    • 0001646121 scopus 로고    scopus 로고
    • Variational learning for switching state-space models
    • Z. Ghahramani, and G.E. Hinton Variational learning for switching state-space models Neural Computation 12 1998 963 996
    • (1998) Neural Computation , vol.12 , pp. 963-996
    • Ghahramani, Z.1    Hinton, G.E.2
  • 16
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem a systematic study
    • N. Japkowicz, and S. Stephen The class imbalance problem a systematic study Intelligent Data Analysis 6 5 2002 429 449
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 18
    • 79955735775 scopus 로고    scopus 로고
    • Safety analysis in process facilities comparison of fault tree and Bayesian network approaches
    • N. Khakzad, F. Khan, and P. Amyotte Safety analysis in process facilities comparison of fault tree and Bayesian network approaches Reliability Engineering and System Safety 96 8 2011 925 932
    • (2011) Reliability Engineering and System Safety , vol.96 , Issue.8 , pp. 925-932
    • Khakzad, N.1    Khan, F.2    Amyotte, P.3
  • 19
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artificial Intelligence 97 1-2 1997 273 324 (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 20
    • 34447618398 scopus 로고    scopus 로고
    • Risk-based reconfiguration of safety monitoring system using dynamic Bayesian network
    • DOI 10.1016/j.ress.2006.09.012, PII S0951832006002146, ESREL 2005
    • T. Kohda, and W. Cui Risk-based reconfiguration of safety monitoring system using dynamic Bayesian network Reliability Engineering and System Safety 92 12 2007 1716 1723 (Pubitemid 47088929)
    • (2007) Reliability Engineering and System Safety , vol.92 , Issue.12 , pp. 1716-1723
    • Kohda, T.1    Cui, W.2
  • 21
    • 21244496407 scopus 로고    scopus 로고
    • Latent classification models
    • H. Langseth, and T.D. Nielsen Latent classification models Machine Learning 59 3 2005 237 265 (Pubitemid 40890479)
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 237-265
    • Langseth, H.1    Nielsen, T.D.2
  • 22
    • 33748310590 scopus 로고    scopus 로고
    • Bayesian networks in reliability
    • DOI 10.1016/j.ress.2005.11.037, PII S0951832005001985
    • H. Langseth, and L. Portinale Bayesian networks in reliability Reliability Engineering and System Safety 92 1 2007 92 108 (Pubitemid 44332140)
    • (2007) Reliability Engineering and System Safety , vol.92 , Issue.1 , pp. 92-108
    • Langseth, H.1    Portinale, L.2
  • 23
    • 69549119986 scopus 로고    scopus 로고
    • Understanding video events a survey of methods for automatic interpretation of semantic occurrences in video
    • G. Lavee, E. Rivlin, and M. Rudzsky Understanding video events a survey of methods for automatic interpretation of semantic occurrences in video IEEE Transactions on Systems, Man, and Cybernetics Part C 39 5 2009 489 504
    • (2009) IEEE Transactions on Systems, Man, and Cybernetics Part C , vol.39 , Issue.5 , pp. 489-504
    • Lavee, G.1    Rivlin, E.2    Rudzsky, M.3
  • 27
    • 39749155904 scopus 로고    scopus 로고
    • Radyban: A tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks
    • DOI 10.1016/j.ress.2007.03.013, PII S0951832007001056
    • S. Montani, L. Portinale, A. Bobbio, and D.C. Raiteri Radyban A tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks Reliability Engineering and System Safety 93 7 2008 922 932 (Pubitemid 351305184)
    • (2008) Reliability Engineering and System Safety , vol.93 , Issue.7 , pp. 922-932
    • Montani, S.1    Portinale, L.2    Bobbio, A.3    Codetta-Raiteri, D.4
  • 29
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L. Rabiner A tutorial on hidden Markov models and selected applications in speech recognition Proceedings of the IEEE 77 2 1989 257 286
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.1
  • 31
    • 0028667329 scopus 로고
    • Hidden Markov models for fault detection in dynamic systems
    • DOI 10.1016/0031-3203(94)90024-8
    • P. Smyth Hidden Markov models for fault detection in dynamic system Pattern Recognition 27 1 1994 149 164 (Pubitemid 124017399)
    • (1994) Pattern Recognition , vol.27 , Issue.1 , pp. 149-164
    • Smyth, P.1
  • 32
    • 66749182851 scopus 로고    scopus 로고
    • Analysis of activities of daily living in elderly people living alone single-subject feasibility study
    • R. Suzuki, M. Ogawa, S. Otake, T. Izutsu, Y. Tobimatsu, and S.-I. Izumi Analysis of activities of daily living in elderly people living alone single-subject feasibility study Telemedicine Journal and E-Health 10 2 2004 260 276
    • (2004) Telemedicine Journal and E-Health , vol.10 , Issue.2 , pp. 260-276
    • Suzuki, R.1    Ogawa, M.2    Otake, S.3    Izutsu, T.4    Tobimatsu, Y.5    Izumi, S.-I.6
  • 33
    • 84948981656 scopus 로고    scopus 로고
    • Bayesian networks for reliability analysis of complex systems
    • Progress in Artificial Intelligence - IBERAMIA 98
    • Torres-Toledano JG, Sucar LE. Bayesian networks for reliability analysis of complex systems. In: Proceedings of the 6th Ibero-American conference on AI: progress in artificial intelligence, IBERAMIA '98, London, UK: Springer-Verlag; 1998. p. 195-206. (Pubitemid 128145621)
    • (1998) Lecture Notes in Computer Science , Issue.1484 , pp. 195-206
    • Torres-Toledano, J.G.1    Sucar, L.E.2
  • 35
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive Bayes: Aggregating one-dependence estimators
    • DOI 10.1007/s10994-005-4258-6
    • G.I. Webb, J.R. Boughton, and Z. Wang Not so naïve Bayes aggregating one-dependence estimators Machine Learning 58 1 2005 5 24 (Pubitemid 40356736)
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.R.2    Wang, Z.3
  • 37
    • 84883443410 scopus 로고    scopus 로고
    • On approximate inference of dynamic latent classification models for oil drilling monitoring
    • Presented at the
    • Zhong S. On approximate inference of dynamic latent classification models for oil drilling monitoring. Presented at the 9th Bayesian modeling applications (in conjunction with UAI-2012), 〈 http://www.abnms.org/ uai2012-apps-workshop/papers/Zhong.pdf 〉; 2012.
    • (2012) 9th Bayesian Modeling Applications (In Conjunction with UAI-2012)
    • Zhong, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.