-
1
-
-
0025725905
-
Instance-based learning algorithms
-
Aha, D., Kibler, D. F., & Albert, M. (1991). Instance-based learning algorithms. Machine Learning, 6, 37-66.
-
(1991)
Machine Learning
, vol.6
, pp. 37-66
-
-
Aha, D.1
Kibler, D.F.2
Albert, M.3
-
5
-
-
79952270109
-
Improving Naive Bayes using class-conditional ICA
-
Advances in Artificial Intelligence. Berlin, Germany: Springer-Verlag
-
Bressan, M., & Vitrià, J. (2002). Improving Naive Bayes using class-conditional ICA. In Advances in Artificial Intelligence (pp. 1-10). Vol. 2527 of Lecture Notes in Artificial Intelligence. Berlin, Germany: Springer-Verlag.
-
(2002)
Lecture Notes in Artificial Intelligence
, vol.2527
, pp. 1-10
-
-
Bressan, M.1
Vitrià, J.2
-
6
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2:2, 955-974.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 955-974
-
-
Burges, C.1
-
7
-
-
84970548695
-
A multivariate study of variation in two species of rock crab of genus Leptograpsus
-
Campbell, N., & Mahon, R. (1974). A multivariate study of variation in two species of rock crab of genus Leptograpsus. Australian Journal of Zoology, 22, 417-425.
-
(1974)
Australian Journal of Zoology
, vol.22
, pp. 417-425
-
-
Campbell, N.1
Mahon, R.2
-
8
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-38.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
10
-
-
0002593344
-
Multi-interval discretization of continuous-valued attributes for classification learning
-
San Mateo, CA: Morgan Kaufmann Publishers
-
Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes for classification learning. In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (pp. 1022-1027). San Mateo, CA: Morgan Kaufmann Publishers.
-
(1993)
Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence
, pp. 1022-1027
-
-
Fayyad, U.M.1
Irani, K.B.2
-
11
-
-
0037262840
-
Mixtures of factor analysers. Bayesian estimation and inference by stochastic simulation
-
Fokoué, E., & Titterington, D. M. (2003). Mixtures of factor analysers. Bayesian estimation and inference by stochastic simulation. Machine Learning, 50:1/2, 73-94.
-
(2003)
Machine Learning
, vol.50
, Issue.1-2
, pp. 73-94
-
-
Fokoué, E.1
Titterington, D.M.2
-
13
-
-
0031276011
-
Bayesian network classifiers
-
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29:2/3, 131-163.
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
14
-
-
0040973441
-
Bayesian network classification with continuous attributes: Getting the best of both discretization and parametric fitting
-
San Francisco, CA: Morgan Kaufmann Publishers
-
Friedman, N., Goldszmidt, M., & Lee, T. J. (1998). Bayesian network classification with continuous attributes: Getting the best of both discretization and parametric fitting. In Proceedings of the Fifteenth International Conference on Machine Learning (pp. 179-187). San Francisco, CA: Morgan Kaufmann Publishers.
-
(1998)
Proceedings of the Fifteenth International Conference on Machine Learning
, pp. 179-187
-
-
Friedman, N.1
Goldszmidt, M.2
Lee, T.J.3
-
15
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
Friedman, N., Linial, M., Nachman, I., & Pe'er, D. (2000). Using Bayesian networks to analyze expression data. Journal of Computational Biology, 7, 601-620.
-
(2000)
Journal of Computational Biology
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'Er, D.4
-
16
-
-
78650167300
-
A linear-Bayes classifier
-
IBERAMIA-SBIA. Berlin, Germany: Springer-Verlag
-
Gama, J. (2000). A linear-Bayes classifier. In IBERAMIA-SBIA (pp. 269-279). Vol. 1952 of Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag.
-
(2000)
Lecture Notes in Computer Science
, vol.1952
, pp. 269-279
-
-
Gama, J.1
-
17
-
-
0004675530
-
Learning Gaussian networks
-
Microsoft Research
-
Geiger, D., & Heckerman, D. (1994). Learning Gaussian networks. Technical Report MSR-TR-94-10, Microsoft Research.
-
(1994)
Technical Report
, vol.MSR-TR-94-10
-
-
Geiger, D.1
Heckerman, D.2
-
18
-
-
0003744820
-
The EM algorithm for mixtures of factor analyzers
-
Department of Computer Science, University of Toronto, Canada
-
Ghahramani, Z., & Hinton, G. E. (1996). The EM algorithm for mixtures of factor analyzers. Technical Report CRG-TR-96-1, Department of Computer Science, University of Toronto, Canada.
-
(1996)
Technical Report
, vol.CRG-TR-96-1
-
-
Ghahramani, Z.1
Hinton, G.E.2
-
19
-
-
2342601231
-
Learning Bayesian nets that perform well
-
San Fransisco, CA: Morgan Kaufmann Publishers
-
Greiner, R., Grove, A. J., & Schuurmans, D. (1997). Learning Bayesian nets that perform well. In Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence (pp. 198-207). San Fransisco, CA: Morgan Kaufmann Publishers.
-
(1997)
Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence
, pp. 198-207
-
-
Greiner, R.1
Grove, A.J.2
Schuurmans, D.3
-
20
-
-
0030737323
-
Modelling the manifolds of images of handwritten digits
-
Hinton, G., Dayan, P., & Revow, M. (1997). Modelling the manifolds of images of handwritten digits. IEEE Transactions on Neural Networks, 8:1, 65-74.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.1
, pp. 65-74
-
-
Hinton, G.1
Dayan, P.2
Revow, M.3
-
21
-
-
0003905759
-
-
New York: John Wiley & Sons
-
Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analysis, adaptive and learning systems for signal processing, communications, and control. New York: John Wiley & Sons.
-
(2001)
Independent Component Analysis, Adaptive and Learning Systems for Signal Processing, Communications, and Control
-
-
Hyvärinen, A.1
Karhunen, J.2
Oja, E.3
-
23
-
-
0003607148
-
-
London, UK: Charles Griffin & Co., 2nd edition
-
Kendall, M. (1980). Multivariate analysis. London, UK: Charles Griffin & Co., 2nd edition.
-
(1980)
Multivariate Analysis
-
-
Kendall, M.1
-
24
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
San Mateo, CA: Morgan Kaufmann Publishers
-
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (pp. 1137-1143). San Mateo, CA: Morgan Kaufmann Publishers.
-
(1995)
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence
, pp. 1137-1143
-
-
Kohavi, R.1
-
25
-
-
84904506139
-
MLC++: A machine learning library in C++
-
IEEE Computer Society Press
-
Kohavi, R., John, G., Long, R., Manley, D., & Pfleger, K. (1994). MLC++: A machine learning library in C++. In Proceedings of the Sixth International Conference on Tools with Artificial Intelligence (pp. 740-743). IEEE Computer Society Press.
-
(1994)
Proceedings of the Sixth International Conference on Tools with Artificial Intelligence
, pp. 740-743
-
-
Kohavi, R.1
John, G.2
Long, R.3
Manley, D.4
Pfleger, K.5
-
26
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97:1/2, 273-324.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
27
-
-
0028482006
-
Learning Bayesian belief networks: An approach based on the MDL principle
-
Lam, W., & Bacchus, F. (1994). Learning Bayesian belief networks: An approach based on the MDL principle. Computational Intelligence, 10:4, 269-293.
-
(1994)
Computational Intelligence
, vol.10
, Issue.4
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
31
-
-
0012429239
-
A Bayesian network classifier that combines a finite mixture model and a Naive Bayes model
-
CA. San Fransisco: Morgan Kaufmann Publishers
-
Monti, S., & Cooper, G. F. (1999a). A Bayesian network classifier that combines a finite mixture model and a Naive Bayes model. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence CA., (pp. 447-456). San Fransisco: Morgan Kaufmann Publishers.
-
(1999)
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
, pp. 447-456
-
-
Monti, S.1
Cooper, G.F.2
-
32
-
-
0344009394
-
Learning hybrid Bayesian networks from data
-
M. I. Jordan (Ed.). Cambridge, MA: The MIT Press
-
Monti, S. & Cooper, G. F. (1999b). Learning hybrid Bayesian networks from data. In M. I. Jordan (Ed.), Learning in graphical models (pp. 521-540). Cambridge, MA: The MIT Press.
-
(1999)
Learning in Graphical Models
, pp. 521-540
-
-
Monti, S.1
Cooper, G.F.2
-
33
-
-
33748087622
-
Fitting a conditional Gaussian distribution
-
Department of Computer Science, University of California at Berkeley
-
Murphy, K. (1998). Fitting a conditional Gaussian distribution. Technical report, Department of Computer Science, University of California at Berkeley.
-
(1998)
Technical Report
-
-
Murphy, K.1
-
34
-
-
0042847140
-
Inference for the generalization error
-
Nadeau, C., & Bengio, Y. (2003). Inference for the generalization error. Machine Learning, 52:3, 239-281.
-
(2003)
Machine Learning
, vol.52
, Issue.3
, pp. 239-281
-
-
Nadeau, C.1
Bengio, Y.2
-
36
-
-
0018015137
-
Modelling by shortest data description
-
Rissanen, J. (1978). Modelling by shortest data description. Automatica, 14, 465-471.
-
(1978)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
37
-
-
34250232348
-
EM algorithms for ML factor analysis
-
Rubin, D. B., & Thayer, D. T. (1982). EM algorithms for ML factor analysis. Psychometrika, 47:1, 69-76.
-
(1982)
Psychometrika
, vol.47
, Issue.1
, pp. 69-76
-
-
Rubin, D.B.1
Thayer, D.T.2
-
38
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464.
-
(1978)
The Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
39
-
-
9444258129
-
A decomposition of classes via clustering to explain and improve Naive Bayes
-
Proceedings of the Fourteenth European Conference on Machine Learning. Berlin, Germany: Springer-Verlag
-
Vilalta, R., & Rish, I. (2003). A decomposition Of classes via clustering to explain and improve Naive Bayes. In Proceedings of the Fourteenth European Conference on Machine Learning (pp. 444-455). Vol. 2837 of Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag.
-
(2003)
Lecture Notes in Computer Science
, vol.2837
, pp. 444-455
-
-
Vilalta, R.1
Rish, I.2
|