메뉴 건너뛰기




Volumn 59, Issue 3, 2005, Pages 237-265

Latent classification models

Author keywords

Classification; Correlation; Na ve Bayes; Probabilistic graphical models

Indexed keywords

ALGORITHMS; CORRELATION METHODS; ENCODING (SYMBOLS); GRAPHIC METHODS; MATHEMATICAL MODELS; PROBABILISTIC LOGICS; RELAXATION PROCESSES;

EID: 21244496407     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-005-0472-5     Document Type: Article
Times cited : (13)

References (40)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha, D., Kibler, D. F., & Albert, M. (1991). Instance-based learning algorithms. Machine Learning, 6, 37-66.
    • (1991) Machine Learning , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.F.2    Albert, M.3
  • 5
    • 79952270109 scopus 로고    scopus 로고
    • Improving Naive Bayes using class-conditional ICA
    • Advances in Artificial Intelligence. Berlin, Germany: Springer-Verlag
    • Bressan, M., & Vitrià, J. (2002). Improving Naive Bayes using class-conditional ICA. In Advances in Artificial Intelligence (pp. 1-10). Vol. 2527 of Lecture Notes in Artificial Intelligence. Berlin, Germany: Springer-Verlag.
    • (2002) Lecture Notes in Artificial Intelligence , vol.2527 , pp. 1-10
    • Bressan, M.1    Vitrià, J.2
  • 6
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2:2, 955-974.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 955-974
    • Burges, C.1
  • 7
    • 84970548695 scopus 로고
    • A multivariate study of variation in two species of rock crab of genus Leptograpsus
    • Campbell, N., & Mahon, R. (1974). A multivariate study of variation in two species of rock crab of genus Leptograpsus. Australian Journal of Zoology, 22, 417-425.
    • (1974) Australian Journal of Zoology , vol.22 , pp. 417-425
    • Campbell, N.1    Mahon, R.2
  • 10
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • San Mateo, CA: Morgan Kaufmann Publishers
    • Fayyad, U. M., & Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes for classification learning. In Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (pp. 1022-1027). San Mateo, CA: Morgan Kaufmann Publishers.
    • (1993) Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence , pp. 1022-1027
    • Fayyad, U.M.1    Irani, K.B.2
  • 11
    • 0037262840 scopus 로고    scopus 로고
    • Mixtures of factor analysers. Bayesian estimation and inference by stochastic simulation
    • Fokoué, E., & Titterington, D. M. (2003). Mixtures of factor analysers. Bayesian estimation and inference by stochastic simulation. Machine Learning, 50:1/2, 73-94.
    • (2003) Machine Learning , vol.50 , Issue.1-2 , pp. 73-94
    • Fokoué, E.1    Titterington, D.M.2
  • 14
    • 0040973441 scopus 로고    scopus 로고
    • Bayesian network classification with continuous attributes: Getting the best of both discretization and parametric fitting
    • San Francisco, CA: Morgan Kaufmann Publishers
    • Friedman, N., Goldszmidt, M., & Lee, T. J. (1998). Bayesian network classification with continuous attributes: Getting the best of both discretization and parametric fitting. In Proceedings of the Fifteenth International Conference on Machine Learning (pp. 179-187). San Francisco, CA: Morgan Kaufmann Publishers.
    • (1998) Proceedings of the Fifteenth International Conference on Machine Learning , pp. 179-187
    • Friedman, N.1    Goldszmidt, M.2    Lee, T.J.3
  • 16
    • 78650167300 scopus 로고    scopus 로고
    • A linear-Bayes classifier
    • IBERAMIA-SBIA. Berlin, Germany: Springer-Verlag
    • Gama, J. (2000). A linear-Bayes classifier. In IBERAMIA-SBIA (pp. 269-279). Vol. 1952 of Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag.
    • (2000) Lecture Notes in Computer Science , vol.1952 , pp. 269-279
    • Gama, J.1
  • 17
    • 0004675530 scopus 로고
    • Learning Gaussian networks
    • Microsoft Research
    • Geiger, D., & Heckerman, D. (1994). Learning Gaussian networks. Technical Report MSR-TR-94-10, Microsoft Research.
    • (1994) Technical Report , vol.MSR-TR-94-10
    • Geiger, D.1    Heckerman, D.2
  • 18
    • 0003744820 scopus 로고    scopus 로고
    • The EM algorithm for mixtures of factor analyzers
    • Department of Computer Science, University of Toronto, Canada
    • Ghahramani, Z., & Hinton, G. E. (1996). The EM algorithm for mixtures of factor analyzers. Technical Report CRG-TR-96-1, Department of Computer Science, University of Toronto, Canada.
    • (1996) Technical Report , vol.CRG-TR-96-1
    • Ghahramani, Z.1    Hinton, G.E.2
  • 20
  • 23
    • 0003607148 scopus 로고
    • London, UK: Charles Griffin & Co., 2nd edition
    • Kendall, M. (1980). Multivariate analysis. London, UK: Charles Griffin & Co., 2nd edition.
    • (1980) Multivariate Analysis
    • Kendall, M.1
  • 24
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • San Mateo, CA: Morgan Kaufmann Publishers
    • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence (pp. 1137-1143). San Mateo, CA: Morgan Kaufmann Publishers.
    • (1995) Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 26
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97:1/2, 273-324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 27
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • Lam, W., & Bacchus, F. (1994). Learning Bayesian belief networks: An approach based on the MDL principle. Computational Intelligence, 10:4, 269-293.
    • (1994) Computational Intelligence , vol.10 , Issue.4 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 31
    • 0012429239 scopus 로고    scopus 로고
    • A Bayesian network classifier that combines a finite mixture model and a Naive Bayes model
    • CA. San Fransisco: Morgan Kaufmann Publishers
    • Monti, S., & Cooper, G. F. (1999a). A Bayesian network classifier that combines a finite mixture model and a Naive Bayes model. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence CA., (pp. 447-456). San Fransisco: Morgan Kaufmann Publishers.
    • (1999) Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence , pp. 447-456
    • Monti, S.1    Cooper, G.F.2
  • 32
    • 0344009394 scopus 로고    scopus 로고
    • Learning hybrid Bayesian networks from data
    • M. I. Jordan (Ed.). Cambridge, MA: The MIT Press
    • Monti, S. & Cooper, G. F. (1999b). Learning hybrid Bayesian networks from data. In M. I. Jordan (Ed.), Learning in graphical models (pp. 521-540). Cambridge, MA: The MIT Press.
    • (1999) Learning in Graphical Models , pp. 521-540
    • Monti, S.1    Cooper, G.F.2
  • 33
    • 33748087622 scopus 로고    scopus 로고
    • Fitting a conditional Gaussian distribution
    • Department of Computer Science, University of California at Berkeley
    • Murphy, K. (1998). Fitting a conditional Gaussian distribution. Technical report, Department of Computer Science, University of California at Berkeley.
    • (1998) Technical Report
    • Murphy, K.1
  • 34
    • 0042847140 scopus 로고    scopus 로고
    • Inference for the generalization error
    • Nadeau, C., & Bengio, Y. (2003). Inference for the generalization error. Machine Learning, 52:3, 239-281.
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 239-281
    • Nadeau, C.1    Bengio, Y.2
  • 36
    • 0018015137 scopus 로고
    • Modelling by shortest data description
    • Rissanen, J. (1978). Modelling by shortest data description. Automatica, 14, 465-471.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 37
    • 34250232348 scopus 로고
    • EM algorithms for ML factor analysis
    • Rubin, D. B., & Thayer, D. T. (1982). EM algorithms for ML factor analysis. Psychometrika, 47:1, 69-76.
    • (1982) Psychometrika , vol.47 , Issue.1 , pp. 69-76
    • Rubin, D.B.1    Thayer, D.T.2
  • 38
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 39
    • 9444258129 scopus 로고    scopus 로고
    • A decomposition of classes via clustering to explain and improve Naive Bayes
    • Proceedings of the Fourteenth European Conference on Machine Learning. Berlin, Germany: Springer-Verlag
    • Vilalta, R., & Rish, I. (2003). A decomposition Of classes via clustering to explain and improve Naive Bayes. In Proceedings of the Fourteenth European Conference on Machine Learning (pp. 444-455). Vol. 2837 of Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag.
    • (2003) Lecture Notes in Computer Science , vol.2837 , pp. 444-455
    • Vilalta, R.1    Rish, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.