메뉴 건너뛰기




Volumn 92, Issue 1, 2007, Pages 92-108

Bayesian networks in reliability

Author keywords

Bayesian networks; Causality; Modelling; Reliability analysis

Indexed keywords

MATHEMATICAL MODELS; PROBABILITY DISTRIBUTIONS; PROBLEM SOLVING; STATISTICAL METHODS;

EID: 33748310590     PISSN: 09518320     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ress.2005.11.037     Document Type: Article
Times cited : (506)

References (86)
  • 2
    • 33748332899 scopus 로고    scopus 로고
    • Almond RG. An extended example for testing graphical belief. Technical Report 6, Statistical Sciences Inc.; 1992.
  • 3
    • 0025519827 scopus 로고
    • Bayesian reliability analysis of complex series/parallel systems of binomial subsystems and components
    • Martz H.F., and Waller R.A. Bayesian reliability analysis of complex series/parallel systems of binomial subsystems and components. Technometrics 32 4 (1990) 407-416
    • (1990) Technometrics , vol.32 , Issue.4 , pp. 407-416
    • Martz, H.F.1    Waller, R.A.2
  • 4
    • 84948981656 scopus 로고    scopus 로고
    • Torres-Toledano JG, Sucar LE. Bayesian networks for reliability analysis of complex systems. In: Proceedings of the 6th Ibero-American conference on AI (IBERAMIA 98).Lecture notes in artificial intelligence, vol. 1484. Berlin, Germany: Springer; 1998. p. 195-206.
  • 5
    • 52949090642 scopus 로고    scopus 로고
    • Solano-Soto J, Sucar, LE. A methodology for reliable system design. In: Proceedings of the 4th international conference on industrial and engineering applications of artificial intelligence and expert systems. Lecture notes in artificial intelligence, vol. 2070. Berlin, Germany: Springer; 2001. p. 734-45.
  • 6
    • 0004611825 scopus 로고    scopus 로고
    • Bayesian networks for dependability analysis. an application to digital control reliability
    • Morgan Kaufmann Publishers, San Francisco, CA
    • Portinale L., and Bobbio A. Bayesian networks for dependability analysis. an application to digital control reliability. Proceedings of the fifteenth conference on uncertainty in artificial intelligence (1999), Morgan Kaufmann Publishers, San Francisco, CA 551-558
    • (1999) Proceedings of the fifteenth conference on uncertainty in artificial intelligence , pp. 551-558
    • Portinale, L.1    Bobbio, A.2
  • 7
    • 0035283768 scopus 로고    scopus 로고
    • Improving the analysis of dependable systems by mapping fault trees into Bayesian networks
    • Bobbio A., Portinale L., Minichino M., and Ciancamerla E. Improving the analysis of dependable systems by mapping fault trees into Bayesian networks. Reliab Eng Syst Saf 71 3 (2001) 249-260
    • (2001) Reliab Eng Syst Saf , vol.71 , Issue.3 , pp. 249-260
    • Bobbio, A.1    Portinale, L.2    Minichino, M.3    Ciancamerla, E.4
  • 8
    • 1042268304 scopus 로고    scopus 로고
    • Reliability analysis using Bayesian networks
    • Tchangani A.P. Reliability analysis using Bayesian networks. Stud Inform Control 10 3 (2001) 181-188
    • (2001) Stud Inform Control , vol.10 , Issue.3 , pp. 181-188
    • Tchangani, A.P.1
  • 9
    • 33748312849 scopus 로고    scopus 로고
    • Causal influence coefficients: a localised maximum entropy approach to Bayesian inference
    • Doksum K., and Lindqvist B.H. (Eds), World Scientific, Singapore [Chapter 4]
    • Ingleby M., and West M. Causal influence coefficients: a localised maximum entropy approach to Bayesian inference. In: Doksum K., and Lindqvist B.H. (Eds). Mathematical and statistical methods in reliability, quality, reliability and engineering statistics (2003), World Scientific, Singapore 45-56 [Chapter 4]
    • (2003) Mathematical and statistical methods in reliability, quality, reliability and engineering statistics , pp. 45-56
    • Ingleby, M.1    West, M.2
  • 10
    • 33847268390 scopus 로고    scopus 로고
    • Dynamic Bayesian networks for modeling advanced fault tree features in dependability analysis
    • A.A. Balkema, Leiden, The Netherlands
    • Montani S., Portinale L., and Bobbio A. Dynamic Bayesian networks for modeling advanced fault tree features in dependability analysis. Proceedings of the sixteenth European conference on safety and reliability (2005), A.A. Balkema, Leiden, The Netherlands 1415-1422
    • (2005) Proceedings of the sixteenth European conference on safety and reliability , pp. 1415-1422
    • Montani, S.1    Portinale, L.2    Bobbio, A.3
  • 11
    • 33748295320 scopus 로고    scopus 로고
    • Boudali H, Dugan JB. A temporal Bayesian network framework. Presented at the fourth international conference on mathematical methods in reliability (MMR-04), Santa Fe, NM; 2004.
  • 12
    • 27744467993 scopus 로고    scopus 로고
    • Boudali H, Dugan JB. A new Bayesian network approach to solve dynamic fault trees. Presented at the 51st annual reliability & maintainability symposium, Alexandria, VA; 2005.
  • 15
    • 0036565321 scopus 로고    scopus 로고
    • Bayesian graphical models for software testing
    • Wooff D., Goldstein M., and Coolen F. Bayesian graphical models for software testing. IEEE Trans Software Eng 28 5 (2002) 510-525
    • (2002) IEEE Trans Software Eng , vol.28 , Issue.5 , pp. 510-525
    • Wooff, D.1    Goldstein, M.2    Coolen, F.3
  • 16
    • 33748319136 scopus 로고    scopus 로고
    • Gran BA. The use of Bayesian belief networks for combining disparate sources of information in the safety assessment of software based systems. PhD thesis, Department of Mathematical Sciences, Norwegian University of Science and Technology, doktor Ingeniør avhandling 2002:35.
  • 19
    • 33748305345 scopus 로고    scopus 로고
    • Arroyo-Figueroa G, Sucar, LE. Temporal Bayesian network of events for fault diagnosis and prediction in thermal power plants. In: Agosta JM, Kipersztok O, Laskey KB, Przytula KW, Rish I, editors. Presented at the first Bayesian applications modeling workshop, ; 2003.
  • 20
    • 33748311718 scopus 로고    scopus 로고
    • Kipersztok O, Provan G. A framework for diagnostic inference of commercial aircraft systems. In: Agosta JM, Kipersztok O, Laskey KB, Przytula KW, Rish I, editors. Presented at the first Bayesian applications modeling workshop, ; 2003.
  • 21
    • 0037399988 scopus 로고    scopus 로고
    • Decision theoretic troubleshooting in coherent systems
    • Langseth H., and Jensen F.V. Decision theoretic troubleshooting in coherent systems. Reliab Eng Syst Safety 80 1 (2003) 49-61
    • (2003) Reliab Eng Syst Safety , vol.80 , Issue.1 , pp. 49-61
    • Langseth, H.1    Jensen, F.V.2
  • 22
    • 33748330951 scopus 로고    scopus 로고
    • Langseth H. Bayesian networks with applications in reliability analysis. PhD thesis, Department of Mathematical Sciences, Norwegian University of Science and Technology, Doktor Ingeniør avhandling 2002:121. .
  • 23
    • 33748334124 scopus 로고    scopus 로고
    • Madsen AL, Kjærulff UB, Kalwa J, Perrier M, Ángel Sotelo M. Applications of probabilistic graphical models to diagnosis and control of autonomous vehicles.In: Kipersztok O, Agosta JM, Almond R, Kappen B, Laskey KB, Przytula KW, et al., editors. Presented at the second Bayesian applications modeling workshop, ; 2004.
  • 24
    • 30944431536 scopus 로고    scopus 로고
    • A maintenance model for components exposed to several failure modes and imperfect repair
    • Doksum K., and Lindqvist B.H. (Eds), World Scientific, Singapore [Chapter 27]
    • Langseth H., and Lindqvist B.H. A maintenance model for components exposed to several failure modes and imperfect repair. In: Doksum K., and Lindqvist B.H. (Eds). Mathematical and statistical methods in reliability, quality, reliability and engineering statistics (2003), World Scientific, Singapore 415-430 [Chapter 27]
    • (2003) Mathematical and statistical methods in reliability, quality, reliability and engineering statistics , pp. 415-430
    • Langseth, H.1    Lindqvist, B.H.2
  • 25
    • 33748305344 scopus 로고    scopus 로고
    • Weidl G, Madsen AL, Dahlquist E. Object oriented Bayesian network for industrial process operation. In: Agosta JM, Kipersztok O, Laskey KB, Przytula KW, Rish I, editors. Presented at the first Bayesian applications modeling workshop, ; 2003.
  • 26
    • 0035328912 scopus 로고    scopus 로고
    • Bayesian belief nets for managing expert judgment and modeling reliability
    • Sigurdsson J.H., Walls L.A., and Quigley J.L. Bayesian belief nets for managing expert judgment and modeling reliability. Quality Reliab Eng Int 17 (2001) 181-190
    • (2001) Quality Reliab Eng Int , vol.17 , pp. 181-190
    • Sigurdsson, J.H.1    Walls, L.A.2    Quigley, J.L.3
  • 27
    • 33748316245 scopus 로고    scopus 로고
    • Agosta JM, Kipersztok O, Laskey KB, Przytula KW, Rish I, editors. Proceedings of the first Bayesian applications modeling workshop, ; 2003.
  • 28
    • 33748305343 scopus 로고    scopus 로고
    • Kipersztok O, Agosta JM, Almond R, Kappen B, Laskey KB, Przytula KW, et al., editors. Proceedings of the second Bayesian applications modeling workshop, ; 2004.
  • 29
    • 33748307196 scopus 로고    scopus 로고
    • Almond R, Kipersztok O, Agosta JM, Goldsmith J, Kappen B, Laskey KB, et al., editors. Proceedings of the third Bayesian applications modeling workshop, , 2005.
  • 34
    • 0026374073 scopus 로고
    • Bayesian networks without tears
    • Charniak E. Bayesian networks without tears. AI Magazine 12 4 (1991) 50-63
    • (1991) AI Magazine , vol.12 , Issue.4 , pp. 50-63
    • Charniak, E.1
  • 36
    • 33748314283 scopus 로고    scopus 로고
    • Vomlel J. Methods of probabilistic knowledge integration. PhD thesis, Faculty of Electrical Engineering, Czech Technical University; 1999.
  • 37
    • 33748320565 scopus 로고    scopus 로고
    • Druzdzel M, van der Gaag L. Building probabilistic networks: where do the numbers come from?-a guide to the literature. Technical Report UU-CS-2000-20, Institute of Information & Computing Sciences, University of Utrecht, The Netherlands; 2000.
  • 39
    • 33748289792 scopus 로고    scopus 로고
    • Ghahramani Z, Hinton GE. The EM algorithm for mixtures of factor analyzers. Technical Report CRG-TR-96-1, Department of Computer Science, University of Toronto, Canada; 1996.
  • 45
    • 0002874631 scopus 로고
    • A computational scheme for reasoning in dynamic probabilistic networks
    • Morgan Kaufmann Publishers, San Francisco, California
    • Kjærulff U. A computational scheme for reasoning in dynamic probabilistic networks. Proceedings of the eighth conference on uncertainty in artificial intelligence (1992), Morgan Kaufmann Publishers, San Francisco, California 121-129
    • (1992) Proceedings of the eighth conference on uncertainty in artificial intelligence , pp. 121-129
    • Kjærulff, U.1
  • 46
    • 0037340045 scopus 로고    scopus 로고
    • Parametric fault tree for the dependability analysis of redundant systems and its high-level Petri net semantics
    • Bobbio A., Franceschinis G., Gaeta R., and Portinale L. Parametric fault tree for the dependability analysis of redundant systems and its high-level Petri net semantics. IEEE Trans Software Eng 29 3 (2003) 270-287
    • (2003) IEEE Trans Software Eng , vol.29 , Issue.3 , pp. 270-287
    • Bobbio, A.1    Franceschinis, G.2    Gaeta, R.3    Portinale, L.4
  • 49
    • 33748312848 scopus 로고    scopus 로고
    • Boutilier C, Friedman N, Goldszmidt M, Koller D. Context-specific independence in Bayesian networks. In: Proceedings of the twelfth conference on uncertainty in artificial intelligence. San Francisco, CA, 1996. p. 115-123.
  • 50
    • 0000049635 scopus 로고    scopus 로고
    • Exploiting causal independence in Bayesian networks inference
    • Zhang N.L., and Poole D. Exploiting causal independence in Bayesian networks inference. J Artif Intell Res 5 (1996) 301-328
    • (1996) J Artif Intell Res , vol.5 , pp. 301-328
    • Zhang, N.L.1    Poole, D.2
  • 51
    • 46149134436 scopus 로고
    • Fusion, propagation, and structuring in belief networks
    • Pearl J. Fusion, propagation, and structuring in belief networks. Artif Intell 29 3 (1986) 241-288
    • (1986) Artif Intell , vol.29 , Issue.3 , pp. 241-288
    • Pearl, J.1
  • 52
    • 0003054847 scopus 로고
    • Parameter adjustment in Bayes networks: The generalized Noisy-OR
    • Morgan Kaufmann Publishers, San Francisco, CA
    • Díez F.J. Parameter adjustment in Bayes networks: The generalized Noisy-OR. Proceedings of the ninth conference on uncertainty in artificial intelligence (1993), Morgan Kaufmann Publishers, San Francisco, CA 99-105
    • (1993) Proceedings of the ninth conference on uncertainty in artificial intelligence , pp. 99-105
    • Díez, F.J.1
  • 53
    • 33748298582 scopus 로고    scopus 로고
    • Cano A, Moral S. Using classification trees to represent potentials in probabilistic causal networks. EURO XV/INFORMS XXXIV joint international meeting, Barcelona, Spain; 1997.
  • 54
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • Spiegelhalter D.J., and Lauritzen S.L. Sequential updating of conditional probabilities on directed graphical structures. Networks 20 (1990) 579-605
    • (1990) Networks , vol.20 , pp. 579-605
    • Spiegelhalter, D.J.1    Lauritzen, S.L.2
  • 55
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A.P., Laird N.M., and Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm. J R Statist Soc Series B 39 (1977) 1-38
    • (1977) J R Statist Soc Series B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 56
    • 58149210716 scopus 로고
    • The EM-algorithm for graphical association models with missing data
    • Lauritzen S.L. The EM-algorithm for graphical association models with missing data. Comput Statist Data Anal 19 (1995) 191-201
    • (1995) Comput Statist Data Anal , vol.19 , pp. 191-201
    • Lauritzen, S.L.1
  • 57
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper G.F., and Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach Learning 9 (1992) 309-347
    • (1992) Mach Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 58
    • 34249761849 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • [also available as Microsoft Research Technical Report MSR-TR-94-09]
    • Heckerman D., Geiger D., and Chickering D.M. Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learning 20 (1995) 197-243 [also available as Microsoft Research Technical Report MSR-TR-94-09]
    • (1995) Mach Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 60
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images
    • Geman S., and Geman D. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6 (1984) 721-741
    • (1984) IEEE Trans Pattern Anal Mach Intell , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 65
    • 0003255122 scopus 로고
    • Complexity, calibration and causality in influence diagrams
    • Oliver R.M., and Smith J.Q. (Eds), Wiley, New York, NY
    • Speed T.P. Complexity, calibration and causality in influence diagrams. In: Oliver R.M., and Smith J.Q. (Eds). Influence diagrams, belief nets and decision analysis (1990), Wiley, New York, NY 49-63
    • (1990) Influence diagrams, belief nets and decision analysis , pp. 49-63
    • Speed, T.P.1
  • 66
    • 0001926461 scopus 로고    scopus 로고
    • Causal inference from graphical models
    • Barndorff-Nielsen O.E., Cox D.R., and Klüppelberg C. (Eds), Chapman & Hall, London, UK
    • Lauritzen S.L. Causal inference from graphical models. In: Barndorff-Nielsen O.E., Cox D.R., and Klüppelberg C. (Eds). Complex stochastic systems (2001), Chapman & Hall, London, UK 63-107
    • (2001) Complex stochastic systems , pp. 63-107
    • Lauritzen, S.L.1
  • 67
    • 0036679398 scopus 로고    scopus 로고
    • Influence diagrams for causal modelling and inference
    • Dawid A.P. Influence diagrams for causal modelling and inference. Int Statist Rev 70 2 (2002) 161-189
    • (2002) Int Statist Rev , vol.70 , Issue.2 , pp. 161-189
    • Dawid, A.P.1
  • 68
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • Pearl J. Causal diagrams for empirical research. Biometrika 82 4 (1995) 669-710
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 669-710
    • Pearl, J.1
  • 70
    • 0001698979 scopus 로고
    • Bayesian updating in causal probabilistic networks by local computations
    • Jensen F.V., Lauritzen S.L., and Olesen K.G. Bayesian updating in causal probabilistic networks by local computations. Comput Statist Quarterly 4 (1990) 269-282
    • (1990) Comput Statist Quarterly , vol.4 , pp. 269-282
    • Jensen, F.V.1    Lauritzen, S.L.2    Olesen, K.G.3
  • 72
    • 33748317631 scopus 로고    scopus 로고
    • Kjærulff U. Triangulation of graphs-algorithms giving small total state space. Research Report R-90-09, Department of Computer Science, Aalborg University, Denmark; 1990.
  • 73
    • 84937428461 scopus 로고    scopus 로고
    • Moral S, Rumí R, Salmerón A. Mixtures of truncated exponentials in hybrid Bayesian networks. In: Sixth European conference on symbolic and quantitative approaches to reasoning with uncertainty. Lecture notes in artificial intelligence, vol. 2143. Berlin, Germany: Springer; 2001. p. 145-67.
  • 75
    • 0001178202 scopus 로고
    • A language and program for complex Bayesian modelling
    • Gilks W., Thomas A., and Spiegelhalter D.J. A language and program for complex Bayesian modelling. Statistician 43 (1994) 169-178
    • (1994) Statistician , vol.43 , pp. 169-178
    • Gilks, W.1    Thomas, A.2    Spiegelhalter, D.J.3
  • 76
    • 33748308516 scopus 로고    scopus 로고
    • Best N, Cowles MK, Vines K. CODA manual version 0.30, MRC Biostatistics Unit, Cambridge, UK; 1995.
  • 77
    • 5844284058 scopus 로고
    • Local expression languages for probabilistic dependence
    • D'Ambrosio B. Local expression languages for probabilistic dependence. Int J Approximate Reasoning 11 1 (1994) 55-81
    • (1994) Int J Approximate Reasoning , vol.11 , Issue.1 , pp. 55-81
    • D'Ambrosio, B.1
  • 78
    • 0006776658 scopus 로고    scopus 로고
    • Finding the M most probable configurations in probabilistic expert systems
    • Nilsson D. Finding the M most probable configurations in probabilistic expert systems. Statist Comput 8 2 (1998) 159-173
    • (1998) Statist Comput , vol.8 , Issue.2 , pp. 159-173
    • Nilsson, D.1
  • 79
    • 0000582237 scopus 로고    scopus 로고
    • A separable method for incorporating imperfect fault-coverage into combinatorial models
    • Amari S., Dugan J.B., and Misra R. A separable method for incorporating imperfect fault-coverage into combinatorial models. IEEE Trans Reliab 48 (1999) 267-274
    • (1999) IEEE Trans Reliab , vol.48 , pp. 267-274
    • Amari, S.1    Dugan, J.B.2    Misra, R.3
  • 80
    • 0029271840 scopus 로고
    • A combinatorial approach to modeling imperfect coverage
    • Doyle S., Dugan J.B., and Patterson-Hine A. A combinatorial approach to modeling imperfect coverage. IEEE Trans Reliab 44 (1995) 87-94
    • (1995) IEEE Trans Reliab , vol.44 , pp. 87-94
    • Doyle, S.1    Dugan, J.B.2    Patterson-Hine, A.3
  • 81
    • 0000388994 scopus 로고
    • A concept of positive dependence for exchangeable random variables
    • Shaked M. A concept of positive dependence for exchangeable random variables. Ann Statist 5 (1977) 505-515
    • (1977) Ann Statist , vol.5 , pp. 505-515
    • Shaked, M.1
  • 82
    • 0022726527 scopus 로고
    • Multivariate distributions for the lifelengths of components of a system sharing a common environment
    • Lindley D.V., and Singpurwalla N.D. Multivariate distributions for the lifelengths of components of a system sharing a common environment. J Appl Probab 23 (1986) 418-431
    • (1986) J Appl Probab , vol.23 , pp. 418-431
    • Lindley, D.V.1    Singpurwalla, N.D.2
  • 83
    • 0011041425 scopus 로고
    • On the reliability function for a system of components sharing a common environment
    • Currit P.A., and Singpurwalla N.D. On the reliability function for a system of components sharing a common environment. J Appl Probab 26 (1988) 763-771
    • (1988) J Appl Probab , vol.26 , pp. 763-771
    • Currit, P.A.1    Singpurwalla, N.D.2
  • 84
    • 33748308517 scopus 로고    scopus 로고
    • Murphy KP. Software packages for graphical models/Bayesian networks. ; 2004.
  • 85
    • 33748324282 scopus 로고    scopus 로고
    • Langseth H. Bayesian networks in reliability: recent developments. Invited talk at the fourth international conference on mathematical methods in reliability MMR-04, Santa Fe, NM; June 21-24, 2004.
  • 86
    • 33748291190 scopus 로고    scopus 로고
    • Portinale L, Bobbio A, Montani S. From AI to dependability: how Bayesian networks can be used for reliability modeling and analysis. Invited talk at the fourth international conference on mathematical methods in reliability MMR-04, Santa Fe, NM; June 21-24, 2004.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.