메뉴 건너뛰기




Volumn 8, Issue 9, 2013, Pages 1765-1786

Count-based differential expression analysis of RNA sequencing data using R and Bioconductor

Author keywords

[No Author keywords available]

Indexed keywords

TRANSCRIPTOME;

EID: 84883364264     PISSN: 17542189     EISSN: 17502799     Source Type: Journal    
DOI: 10.1038/nprot.2013.099     Document Type: Article
Times cited : (881)

References (66)
  • 2
    • 57749195712 scopus 로고    scopus 로고
    • RNA-seq: A revolutionary tool for transcriptomics
    • Wang, Z., Gerstein, M. & Snyder, M. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57-63 (2009).
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 57-63
    • Wang, Z.1    Gerstein, M.2    Snyder, M.3
  • 3
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
    • (2010) Genome Biol. , vol.11
    • Anders, S.1    Huber, W.2
  • 4
    • 36448981743 scopus 로고    scopus 로고
    • Moderated statistical tests for assessing differences in tag abundance
    • Robinson, M.D. & Smyth, G.K. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics 23, 2881-2887 (2007).
    • (2007) Bioinformatics , vol.23 , pp. 2881-2887
    • Robinson, M.D.1    Smyth, G.K.2
  • 5
    • 41149085992 scopus 로고    scopus 로고
    • Small-sample estimation of negative binomial dispersion with applications to SAGE data
    • Robinson, M.D. & Smyth, G.K. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 9, 321-332 (2008).
    • (2008) Biostatistics , vol.9 , pp. 321-332
    • Robinson, M.D.1    Smyth, G.K.2
  • 6
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A bioconductor package for differential expression analysis of digital gene expression data
    • Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 7
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation
    • McCarthy, D.J., Chen, Y. & Smyth, G.K. Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288-4297 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 8
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor: Open software development for computational biology and bioinformatics
    • Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).
    • (2004) Genome Biol. , vol.5
    • Gentleman, R.C.1
  • 9
    • 84875741680 scopus 로고    scopus 로고
    • The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin
    • Zemach, A. et al. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153, 193-205 (2013).
    • (2013) Cell , vol.153 , pp. 193-205
    • Zemach, A.1
  • 10
    • 84879694221 scopus 로고    scopus 로고
    • Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription
    • Lam, M.T. et al. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498, 511-515 (2013).
    • (2013) Nature , vol.498 , pp. 511-515
    • Lam, M.T.1
  • 11
    • 84856008906 scopus 로고    scopus 로고
    • Differential oestrogen receptor binding is associated with clinical outcome in breast cancer
    • Ross-Innes, C.S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389-393 (2012).
    • (2012) Nature , vol.481 , pp. 389-393
    • Ross-Innes, C.S.1
  • 12
    • 84870495795 scopus 로고    scopus 로고
    • Copy-number-aware differential analysis of quantitative DNA sequencing data
    • Robinson, M.D. et al. Copy-number-aware differential analysis of quantitative DNA sequencing data. Genome Res. 22, 2489-2496 (2012).
    • (2012) Genome Res. , vol.22 , pp. 2489-2496
    • Robinson, M.D.1
  • 13
    • 84872080485 scopus 로고    scopus 로고
    • Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer
    • Vanharanta, S. et al. Epigenetic expansion of VHL-HIF signal output drives multiorgan metastasis in renal cancer. Nat. Med. 19, 50-56 (2013).
    • (2013) Nat. Med. , vol.19 , pp. 50-56
    • Vanharanta, S.1
  • 14
    • 84866975037 scopus 로고    scopus 로고
    • Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification
    • Samstein, R.M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell 151, 153-166 (2012).
    • (2012) Cell , vol.151 , pp. 153-166
    • Samstein, R.M.1
  • 15
    • 84866613089 scopus 로고    scopus 로고
    • Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins
    • Johnson, E.K. et al. Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins. PloS ONE 7, e43515 (2012).
    • (2012) PloS ONE , vol.7
    • Johnson, E.K.1
  • 16
    • 84870822864 scopus 로고    scopus 로고
    • Tools for mapping high-throughput sequencing data
    • Fonseca, N.A., Rung, J., Brazma, A. & Marioni, J.C. Tools for mapping high-throughput sequencing data. Bioinformatics 28, 3169-3177 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 3169-3177
    • Fonseca, N.A.1    Rung, J.2    Brazma, A.3    Marioni, J.C.4
  • 17
    • 84859885816 scopus 로고    scopus 로고
    • Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
    • Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562-578 (2012).
    • (2012) Nat. Protoc. , vol.7 , pp. 562-578
    • Trapnell, C.1
  • 18
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-seq experiments
    • Bullard, J.H., Purdom, E., Hansen, K.D. & Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-seq experiments. BMC Bioinform. 11, 94 (2010).
    • (2010) BMC Bioinform. , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4
  • 19
    • 79960264362 scopus 로고    scopus 로고
    • Full-length transcriptome assembly from RNA-seq data without a reference genome
    • Grabherr, M.G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644-652 (2011).
    • (2011) Nat. Biotechnol. , vol.29 , pp. 644-652
    • Grabherr, M.G.1
  • 20
    • 79960896843 scopus 로고    scopus 로고
    • Differential gene expression in the siphonophore Nanomia bijuga (Cnidaria) assessed with multiple next-generation sequencing workflows
    • Siebert, S. et al. Differential gene expression in the siphonophore Nanomia bijuga (Cnidaria) assessed with multiple next-generation sequencing workflows. PLoS ONE 6, 12 (2011).
    • (2011) PLoS ONE , vol.6 , pp. 12
    • Siebert, S.1
  • 21
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: Discovering splice junctions with RNA-seq
    • Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105-1111 (2009).
    • (2009) Bioinformatics , vol.25 , pp. 1105-1111
    • Trapnell, C.1    Pachter, L.2    Salzberg, S.L.3
  • 22
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511-515 (2010).
    • (2010) Nat. Biotechnol. , vol.28 , pp. 511-515
    • Trapnell, C.1
  • 23
    • 77955298482 scopus 로고    scopus 로고
    • BaySeq: Empirical bayesian methods for identifying differential expression in sequence count data
    • Hardcastle, T.J. & Kelly, K.A. baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinform. 11, 422 (2010).
    • (2010) BMC Bioinform. , vol.11 , pp. 422
    • Hardcastle, T.J.1    Kelly, K.A.2
  • 24
    • 80053451880 scopus 로고    scopus 로고
    • A powerful and flexible approach to the analysis of RNA sequence count data
    • Zhou, Y.-H., Xia, K. & Wright, F.A. A powerful and flexible approach to the analysis of RNA sequence count data. Bioinformatics 27, 2672-2678 (2011).
    • (2011) Bioinformatics , vol.27 , pp. 2672-2678
    • Zhou, Y.-H.1    Xia, K.2    Wright, F.A.3
  • 26
    • 84879198972 scopus 로고    scopus 로고
    • Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates
    • pii
    • Lund, S.P., Nettleton, D., McCarthy, D.J. & Smyth, G.K. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat. Appl. Genet. Mol. Biol. 11, pii (2012).
    • (2012) Stat. Appl. Genet. Mol. Biol. , vol.11
    • Lund, S.P.1    Nettleton, D.2    McCarthy, D.J.3    Smyth, G.K.4
  • 27
    • 84874677498 scopus 로고    scopus 로고
    • A comparison of methods for differential expression analysis of RNA-seq data
    • Soneson, C. & Delorenzi, M. A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinform. 14, 91 (2013).
    • (2013) BMC Bioinform. , vol.14 , pp. 91
    • Soneson, C.1    Delorenzi, M.2
  • 28
    • 34247330971 scopus 로고    scopus 로고
    • Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements
    • Lareau, L.F., Inada, M., Green, R.E., Wengrod, J.C. & Brenner, S.E. Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements. Nature 446, 926-929 (2007).
    • (2007) Nature , vol.446 , pp. 926-929
    • Lareau, L.F.1    Inada, M.2    Green, R.E.3    Wengrod, J.C.4    Brenner, S.E.5
  • 29
    • 84865527768 scopus 로고    scopus 로고
    • Detecting differential usage of exons from RNA-seq data
    • Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from RNA-seq data. Genome Res. 22, 2008-2017 (2012).
    • (2012) Genome Res. , vol.22 , pp. 2008-2017
    • Anders, S.1    Reyes, A.2    Huber, W.3
  • 30
    • 84863992953 scopus 로고    scopus 로고
    • Identifying differentially expressed transcripts from RNA-seq data with biological variation
    • Glaus, P., Honkela, A. & Rattray, M. Identifying differentially expressed transcripts from RNA-seq data with biological variation. Bioinformatics 28, 1721-1728 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 1721-1728
    • Glaus, P.1    Honkela, A.2    Rattray, M.3
  • 31
    • 84871184589 scopus 로고    scopus 로고
    • Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors
    • Van De Wiel, M.A. et al. Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors. Biostatistics 14, 113-128 (2013).
    • (2013) Biostatistics , vol.14 , pp. 113-128
    • Van De Wiel, M.A.1
  • 32
    • 75649102520 scopus 로고    scopus 로고
    • Sex-specific and lineage-specific alternative splicing in primates
    • Blekhman, R., Marioni, J.C., Zumbo, P., Stephens, M. & Gilad, Y. Sex-specific and lineage-specific alternative splicing in primates. Genome Res. 20, 180-189 (2010).
    • (2010) Genome Res. , vol.20 , pp. 180-189
    • Blekhman, R.1    Marioni, J.C.2    Zumbo, P.3    Stephens, M.4    Gilad, Y.5
  • 33
    • 84861388639 scopus 로고    scopus 로고
    • Preferred analysis methods for single genomic regions in RNA sequencing revealed by processing the shape of coverage
    • Okoniewski, M.J. et al. Preferred analysis methods for single genomic regions in RNA sequencing revealed by processing the shape of coverage. Nucleic Acids Res. 40, e63 (2012).
    • (2012) Nucleic Acids Res. , vol.40
    • Okoniewski, M.J.1
  • 34
    • 79960208246 scopus 로고    scopus 로고
    • Sequencing technology does not eliminate biological variability
    • Hansen, K.D., Wu, Z., Irizarry, R.A. & Leek, J.T. Sequencing technology does not eliminate biological variability. Nat. Biotechnol. 29, 572-573 (2011).
    • (2011) Nat. Biotechnol. , vol.29 , pp. 572-573
    • Hansen, K.D.1    Wu, Z.2    Irizarry, R.A.3    Leek, J.T.4
  • 35
    • 77956873627 scopus 로고    scopus 로고
    • Tackling the widespread and critical impact of batch effects in high-throughput data
    • Leek, J.T. et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11, 733-739 (2010).
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 733-739
    • Leek, J.T.1
  • 36
    • 77955504378 scopus 로고    scopus 로고
    • Statistical design and analysis of RNA sequencing data
    • Auer, P.L. & Doerge, R.W. Statistical design and analysis of RNA sequencing data. Genetics 185, 405-416 (2010).
    • (2010) Genetics , vol.185 , pp. 405-416
    • Auer, P.L.1    Doerge, R.W.2
  • 37
    • 84862250978 scopus 로고    scopus 로고
    • Using control genes to correct for unwanted variation in microarray data
    • Gagnon-Bartsch, J.A. & Speed, T.P. Using control genes to correct for unwanted variation in microarray data. Biostatistics 13, 539-552 (2011).
    • (2011) Biostatistics , vol.13 , pp. 539-552
    • Gagnon-Bartsch, J.A.1    Speed, T.P.2
  • 38
    • 34848914038 scopus 로고    scopus 로고
    • Capturing heterogeneity in gene expression studies by surrogate variable analysis
    • Leek, J.T. & Storey, J.D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, 1724-1735 (2007).
    • (2007) PLoS Genet. , vol.3 , pp. 1724-1735
    • Leek, J.T.1    Storey, J.D.2
  • 40
    • 18544387899 scopus 로고    scopus 로고
    • Reproducible research: A bioinformatics case study
    • Article2
    • Gentleman, R. Reproducible research: a bioinformatics case study. Stat. Appl. Genet. Mol. Biol. 4, Article2 (2005).
    • (2005) Stat. Appl. Genet. Mol. Biol. , vol.4
    • Gentleman, R.1
  • 41
    • 66149192669 scopus 로고    scopus 로고
    • How to map billions of short reads onto genomes
    • Trapnell, C. & Salzberg, S.L. How to map billions of short reads onto genomes. Nat. Biotechnol. 27, 455-457 (2009).
    • (2009) Nat. Biotechnol. , vol.27 , pp. 455-457
    • Trapnell, C.1    Salzberg, S.L.2
  • 42
    • 77951820899 scopus 로고    scopus 로고
    • Fast and SNP-tolerant detection of complex variants and splicing in short reads
    • Wu, T.D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873-881 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 873-881
    • Wu, T.D.1    Nacu, S.2
  • 43
    • 78649345104 scopus 로고    scopus 로고
    • MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery
    • Wang, K. et al. MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 38, e178 (2010).
    • (2010) Nucleic Acids Res. , vol.38
    • Wang, K.1
  • 44
    • 84878580738 scopus 로고    scopus 로고
    • The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote
    • Liao, Y., Smyth, G.K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).
    • (2013) Nucleic Acids Res. , vol.41
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 45
    • 84871809302 scopus 로고    scopus 로고
    • STAR: Ultrafast universal RNA-seq aligner
    • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 15-21
    • Dobin, A.1
  • 46
    • 84875634162 scopus 로고    scopus 로고
    • Integrative genomics viewer (IGV): High-performance genomics data visualization and exploration
    • Thorvaldsdóttir, H., Robinson, J.T. & Mesirov, J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178-192 (2013).
    • (2013) Brief. Bioinform. , vol.14 , pp. 178-192
    • Thorvaldsdóttir, H.1    Robinson, J.T.2    Mesirov, J.P.3
  • 47
    • 77955433415 scopus 로고    scopus 로고
    • Savant: Genome browser for high-throughput sequencing data
    • Fiume, M., Williams, V., Brook, A. & Brudno, M. Savant: genome browser for high-throughput sequencing data. Bioinformatics 26, 1938-1944 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 1938-1944
    • Fiume, M.1    Williams, V.2    Brook, A.3    Brudno, M.4
  • 48
    • 84864424447 scopus 로고    scopus 로고
    • Savant genome browser 2: Visualization and analysis for population-scale genomics
    • Fiume, M. et al. Savant genome browser 2: visualization and analysis for population-scale genomics. Nucleic Acids Res. 40, 1-7 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. 1-7
    • Fiume, M.1
  • 49
    • 70349866687 scopus 로고    scopus 로고
    • ShortRead: A Bioconductor package for input, quality assessment and exploration of high-throughput sequence data
    • Morgan, M. et al. ShortRead: a Bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25, 2607-2608 (2009).
    • (2009) Bioinformatics , vol.25 , pp. 2607-2608
    • Morgan, M.1
  • 50
    • 68549104404 scopus 로고    scopus 로고
    • The sequence alignment/map format and SAM tools
    • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079 (2009).
    • (2009) Bioinformatics , vol.25 , pp. 2078-2079
    • Li, H.1
  • 51
    • 79551584794 scopus 로고    scopus 로고
    • Conservation of an RNA regulatory map between Drosophila and mammals
    • Brooks, A.N. et al. Conservation of an RNA regulatory map between Drosophila and mammals. Genome Res. 21, 193-202 (2011).
    • (2011) Genome Res. , vol.21 , pp. 193-202
    • Brooks, A.N.1
  • 52
    • 0036081355 scopus 로고    scopus 로고
    • Gene expression omnibus: NCBI gene expression and hybridization array data repository
    • Edgar, R., Domrachev, M. & Lash, A.E. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207-210 (2002).
    • (2002) Nucleic Acids Res. , vol.30 , pp. 207-210
    • Edgar, R.1    Domrachev, M.2    Lash, A.E.3
  • 53
    • 0002738159 scopus 로고
    • Parameter orthogonality and approximate conditional inference
    • Cox, D.R. & Reid, N. Parameter orthogonality and approximate conditional inference. J. Roy. Stat. Soc. Ser. B Method. 49, 1-39 (1987).
    • (1987) J. Roy. Stat. Soc. Ser. B Method. , vol.49 , pp. 1-39
    • Cox, D.R.1    Reid, N.2
  • 54
    • 0036376993 scopus 로고    scopus 로고
    • Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments
    • Dudoit, S., Yang, Y.H., Callow, M.J. & Speed, T.P. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat. Sinica 12, 111-139 (2002).
    • (2002) Stat. Sinica , vol.12 , pp. 111-139
    • Dudoit, S.1    Yang, Y.H.2    Callow, M.J.3    Speed, T.P.4
  • 55
    • 77953095629 scopus 로고    scopus 로고
    • Independent filtering increases detection power for high-throughput experiments
    • Bourgon, R., Gentleman, R. & Huber, W. Independent filtering increases detection power for high-throughput experiments. Proc. Natl. Acad. Sci. USA 107, 9546-9551 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 9546-9551
    • Bourgon, R.1    Gentleman, R.2    Huber, W.3
  • 56
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson, M.D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
    • (2010) Genome Biol.
    • Robinson, M.D.1    Oshlack, A.2
  • 57
    • 36248938843 scopus 로고    scopus 로고
    • Data quality assessment from the user 's perspective
    • Cappiello, C., Francalanci, C. & Pernici, B. Data quality assessment from the user 's perspective. Architecture 22, 68-73 (2004).
    • (2004) Architecture , vol.22 , pp. 68-73
    • Cappiello, C.1    Francalanci, C.2    Pernici, B.3
  • 58
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B Methodol. 57, 289-300 (1995).
    • (1995) J. Roy. Stat. Soc. Ser. B Methodol. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 59
    • 84874912212 scopus 로고    scopus 로고
    • A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data
    • Wu, H., Wang, C. & Wu, Z. A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data. Biostatistics 14, 232-243 (2012).
    • (2012) Biostatistics , vol.14 , pp. 232-243
    • Wu, H.1    Wang, C.2    Wu, Z.3
  • 61
    • 84869014474 scopus 로고    scopus 로고
    • A comprehensive comparison of RNA-seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: A case study in Saccharomyces cerevisiae
    • Nookaew, I. et al. A comprehensive comparison of RNA-seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res. 40, 10084-10097 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. 10084-10097
    • Nookaew, I.1
  • 63
    • 84858068675 scopus 로고    scopus 로고
    • Removing technical variability in RNA-seq data using conditional quantile normalization
    • Hansen, K.D., Irizarry, R.A. & Wu, Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13, 204-216 (2012).
    • (2012) Biostatistics , vol.13 , pp. 204-216
    • Hansen, K.D.1    Irizarry, R.A.2    Wu, Z.3
  • 65
    • 84867318866 scopus 로고    scopus 로고
    • EasyRNASeq: A Bioconductor package for processing RNA-seq data
    • Delhomme, N., Padioleau, I., Furlong, E.E. & Steinmetz, L. easyRNASeq: a Bioconductor package for processing RNA-seq data. Bioinformatics 28, 2532-2533 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 2532-2533
    • Delhomme, N.1    Padioleau, I.2    Furlong, E.E.3    Steinmetz, L.4
  • 66
    • 0242529706 scopus 로고    scopus 로고
    • Sweave: Dynamic generation of statistical reports using literate data analysis
    • (eds. Härdle, W. & Rönz, B.) Institut für Statistik und Wahrscheinlichkeitstheorie Technische Universität Wien Physica Verlag
    • Leisch, F. Sweave: dynamic generation of statistical reports using literate data analysis. In Compstat 2002 Proceedings in Computational Statistics Vol. 69 (eds. Härdle, W. & Rönz, B.) 575-580. Institut für Statistik und Wahrscheinlichkeitstheorie, Technische Universität Wien (Physica Verlag, 2002).
    • (2002) Compstat 2002 Proceedings in Computational Statistics , vol.69 , pp. 575-580
    • Leisch, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.